Package: SmoothHazard 2024.04.10
SmoothHazard: Estimation of Smooth Hazard Models for Interval-Censored Data
Estimation of two-state (survival) models and irreversible illness- death models with possibly interval-censored, left-truncated and right-censored data. Proportional intensities regression models can be specified to allow for covariates effects separately for each transition. We use either a parametric approach with Weibull baseline intensities or a semi-parametric approach with M-splines approximation of baseline intensities in order to obtain smooth estimates of the hazard functions. Parameter estimates are obtained by maximum likelihood in the parametric approach and by penalized maximum likelihood in the semi-parametric approach.
Authors:
SmoothHazard_2024.04.10.tar.gz
SmoothHazard_2024.04.10.zip(r-4.5)SmoothHazard_2024.04.10.zip(r-4.4)SmoothHazard_2024.04.10.zip(r-4.3)
SmoothHazard_2024.04.10.tgz(r-4.4-x86_64)SmoothHazard_2024.04.10.tgz(r-4.4-arm64)SmoothHazard_2024.04.10.tgz(r-4.3-x86_64)SmoothHazard_2024.04.10.tgz(r-4.3-arm64)
SmoothHazard_2024.04.10.tar.gz(r-4.5-noble)SmoothHazard_2024.04.10.tar.gz(r-4.4-noble)
SmoothHazard_2024.04.10.tgz(r-4.4-emscripten)SmoothHazard_2024.04.10.tgz(r-4.3-emscripten)
SmoothHazard.pdf |SmoothHazard.html✨
SmoothHazard/json (API)
# Install 'SmoothHazard' in R: |
install.packages('SmoothHazard', repos = c('https://tagteam.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 8 months agofrom:7e55a8fa4a. Checks:OK: 7 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 07 2024 |
R-4.5-win-x86_64 | NOTE | Nov 07 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 07 2024 |
R-4.4-win-x86_64 | OK | Nov 07 2024 |
R-4.4-mac-x86_64 | OK | Nov 07 2024 |
R-4.4-mac-aarch64 | OK | Nov 07 2024 |
R-4.3-win-x86_64 | OK | Nov 07 2024 |
R-4.3-mac-x86_64 | OK | Nov 07 2024 |
R-4.3-mac-aarch64 | OK | Nov 07 2024 |
Exports:idmidmModelintensityshrsimulateIDMsurvIC
Dependencies:clicodetoolsdata.tablediagramdigestfuturefuture.applyglobalsKernSmoothlatticelavalistenvMatrixmvtnormnumDerivparallellyprodlimprogressrRcppshapeSQUAREMsurvival