Title: | Product-Limit Estimation for Censored Event History Analysis |
---|---|
Description: | Fast and user friendly implementation of nonparametric estimators for censored event history (survival) analysis. Kaplan-Meier and Aalen-Johansen method. |
Authors: | Thomas A. Gerds |
Maintainer: | Thomas A. Gerds <[email protected]> |
License: | GPL (>= 2) |
Version: | 2024.06.24 |
Built: | 2025-01-16 04:22:47 UTC |
Source: | https://github.com/tagteam/prodlim |
This function is invoked and controlled by plot.prodlim
.
atRisk( x, newdata, times, line, col, labelcol = NULL, interspace, cex, labels, title = "", titlecol = NULL, pos, adj, dist, xdist, adjust.labels = TRUE, show.censored = FALSE, unit = "npc", ... )
atRisk( x, newdata, times, line, col, labelcol = NULL, interspace, cex, labels, title = "", titlecol = NULL, pos, adj, dist, xdist, adjust.labels = TRUE, show.censored = FALSE, unit = "npc", ... )
x |
an object of class ‘prodlim’ as returned by the
|
newdata |
see |
times |
Where to compute the atrisk numbers. |
line |
Distance of the atrisk numbers from the inner plot. |
col |
The color of the text. |
labelcol |
The color for the labels. Defaults to col. |
interspace |
Distance between rows of atrisk numbers. |
cex |
Passed on to |
labels |
Labels for the at-risk rows. |
title |
Title for the at-risk labels |
titlecol |
The color for the title. Defaults to 1 (black). |
pos |
The value is passed on to the |
adj |
Passed on to |
dist |
If |
xdist |
Distance in x-axis direction to define the distance between the labels
and the numbers at-risk. Deftaults to |
adjust.labels |
If |
show.censored |
If |
unit |
The graphical coordinate systems unit to convert from when line2user is calling |
... |
Further arguments that are passed to the function
|
This function should not be called directly. The arguments can be specified
as atRisk.arg
in the call to plot.prodlim
.
Nil
Thomas Alexander Gerds <[email protected]>
plot.prodlim
, confInt
,
markTime
Some users like background colors, and it may be helpful to have grid lines
to read off e.g. probabilities from a Kaplan-Meier graph. Both things can be
controlled with this function. However, it mainly serves
plot.prodlim
.
backGround( xlim, ylim, bg = "white", fg = "gray77", horizontal = NULL, vertical = NULL, border = "black" )
backGround( xlim, ylim, bg = "white", fg = "gray77", horizontal = NULL, vertical = NULL, border = "black" )
xlim |
Limits for the xaxis, defaults to par("usr")[1:2]. |
ylim |
Limits for the yaxis, defaults to par("usr")[3:4]. |
bg |
Background color. Can be multiple colors which are then switched at each horizontal line. |
fg |
Grid line color. |
horizontal |
Numerical values at which horizontal grid lines are plotted. |
vertical |
Numerical values at which vertical grid lines are plotted. |
border |
The color of the border around the background. |
Thomas Alexander Gerds <[email protected]>
plot(0,0) backGround(bg="beige",fg="red",vertical=0,horizontal=0) plot(0,0) backGround(bg=c("yellow","green"),fg="red",xlim=c(-1,1),ylim=c(-1,1),horizontal=seq(0,1,.1)) backGround(bg=c("yellow","green"),fg="red",horizontal=seq(0,1,.1))
plot(0,0) backGround(bg="beige",fg="red",vertical=0,horizontal=0) plot(0,0) backGround(bg=c("yellow","green"),fg="red",xlim=c(-1,1),ylim=c(-1,1),horizontal=seq(0,1,.1)) backGround(bg=c("yellow","green"),fg="red",horizontal=seq(0,1,.1))
For competing risk settings, check if the requested cause is known to the object
checkCauses(cause, object)
checkCauses(cause, object)
cause |
cause of interest |
object |
object either obtained with |
This function is invoked and controlled by plot.prodlim
.
confInt(ci, citype, col, lty, lwd, density = 55, ...)
confInt(ci, citype, col, lty, lwd, density = 55, ...)
ci |
A |
citype |
If |
col |
the colour of the lines. |
lty |
the line type of the lines. |
lwd |
the line thickness of the lines. |
density |
For |
... |
Further arguments that are passed to the function
|
This function should not be called directly. The arguments can be specified
as Confint.arg
in the call to plot.prodlim
.
Nil
Thomas Alexander Gerds <[email protected]>
plot.prodlim
, atRisk
,
markTime
Competing risks model for simulation
crModel()
crModel()
Create a competing risks model with to causes to simulate a right censored event time data without covariates
This function requires the lava
package.
A structural equation model initialized with four variables: the latent event times of two causes, the latent right censored time, and the observed right censored event time.
Thomas A. Gerds
library(lava) m <- crModel() d <- sim(m,6) print(d)
library(lava) m <- crModel() d <- sim(m,6) print(d)
This function calls first col2rgb
on a color name and then
uses rgb
to adjust the intensity of the result.
dimColor(col, density = 55)
dimColor(col, density = 55)
col |
Color name or number passed to |
density |
Integer value passed as alpha coefficient to
|
A character vector with the color code. See rgb
for details.
Thomas A. Gerds <[email protected]>
rgb col2rgb
dimColor(2,33) dimColor("green",133)
dimColor(2,33) dimColor("green",133)
Extract event history data and design matrix including specials from call
EventHistory.frame( formula, data, unspecialsDesign = TRUE, specials, specialsFactor = TRUE, specialsDesign = FALSE, stripSpecials = NULL, stripArguments = NULL, stripAlias = NULL, stripUnspecials = NULL, dropIntercept = TRUE, check.formula = TRUE, response = TRUE )
EventHistory.frame( formula, data, unspecialsDesign = TRUE, specials, specialsFactor = TRUE, specialsDesign = FALSE, stripSpecials = NULL, stripArguments = NULL, stripAlias = NULL, stripUnspecials = NULL, dropIntercept = TRUE, check.formula = TRUE, response = TRUE )
formula |
Formula whose left hand side specifies the event history, i.e., either via Surv() or Hist(). |
data |
Data frame in which the formula is interpreted |
unspecialsDesign |
Passed as is to
|
specials |
Character vector of special function names.
Usually the body of the special functions is function(x)x but
e.g., |
specialsFactor |
Passed as is to |
specialsDesign |
Passed as is to |
stripSpecials |
Passed as |
stripArguments |
Passed as |
stripAlias |
Passed as |
stripUnspecials |
Passed as |
dropIntercept |
Passed as is to |
check.formula |
If TRUE check if formula is a Surv or Hist thing. |
response |
If FALSE do not get response data (event.history). |
Obtain a list with the data used for event history regression analysis. This function cannot be used directly on the user level but inside a function to prepare data for survival analysis.
A list which contains
- the event.history (see Hist
)
- the design matrix (see model.design
)
- one entry for each special (see model.design
)
Thomas A. Gerds <[email protected]>
model.frame model.design Hist
## Here are some data with an event time and no competing risks ## and two covariates X1 and X2. ## Suppose we want to declare that variable X1 is treated differently ## than variable X2. For example, X1 could be a cluster variable, or ## X1 should have a proportional effect on the outcome. dsurv <- data.frame(time=1:7, status=c(0,1,1,0,0,0,1), X2=c(2.24,3.22,9.59,4.4,3.54,6.81,5.05), X3=c(1,1,1,1,0,0,1), X4=c(44.69,37.41,68.54,38.85,35.9,27.02,41.84), X1=factor(c("a","b","a","c","c","a","b"), levels=c("c","a","b"))) ## We pass a formula and the data e <- EventHistory.frame(Hist(time,status)~prop(X1)+X2+cluster(X3)+X4, data=dsurv, specials=c("prop","cluster"), stripSpecials=c("prop","cluster")) names(e) ## The first element is the event.history which is result of the left hand ## side of the formula: e$event.history ## same as with(dsurv,Hist(time,status)) ## to see the structure do colnames(e$event.history) unclass(e$event.history) ## in case of competing risks there will be an additional column called event, ## see help(Hist) for more details ## The other elements are the design, i.e., model.matrix for the non-special covariates e$design ## and a data.frame for the special covariates e$prop ## The special covariates can be returned as a model.matrix e2 <- EventHistory.frame(Hist(time,status)~prop(X1)+X2+cluster(X3)+X4, data=dsurv, specials=c("prop","cluster"), stripSpecials=c("prop","cluster"), specialsDesign=TRUE) e2$prop ## and the non-special covariates can be returned as a data.frame e3 <- EventHistory.frame(Hist(time,status)~prop(X1)+X2+cluster(X3)+X4, data=dsurv, specials=c("prop","cluster"), stripSpecials=c("prop","cluster"), specialsDesign=TRUE, unspecialsDesign=FALSE) e3$design ## the general idea is that the function is used to parse the combination of ## formula and data inside another function. Here is an example with ## competing risks SampleRegression <- function(formula,data=parent.frame()){ thecall <- match.call() ehf <- EventHistory.frame(formula=formula, data=data, stripSpecials=c("prop","cluster","timevar"), specials=c("prop","timevar","cluster")) time <- ehf$event.history[,"time"] status <- ehf$event.history[,"status"] ## event as a factor if (attr(ehf$event.history,"model")=="competing.risks"){ event <- ehf$event.history[,"event"] Event <- getEvent(ehf$event.history) list(response=data.frame(time,status,event,Event),X=ehf[-1]) } else{ # no competing risks list(response=data.frame(time,status),X=ehf[-1]) } } dsurv$outcome <- c("cause1","0","cause2","cause1","cause2","cause2","0") SampleRegression(Hist(time,outcome)~prop(X1)+X2+cluster(X3)+X4,dsurv) ## let's test if the parsing works form1 <- Hist(time,outcome!="0")~prop(X1)+X2+cluster(X3)+X4 form2 <- Hist(time,outcome)~prop(X1)+cluster(X3)+X4 ff <- list(form1,form2) lapply(ff,function(f){SampleRegression(f,dsurv)}) ## here is what the riskRegression package uses to ## distinguish between covariates with ## time-proportional effects and covariates with ## time-varying effects: ## Not run: library(riskRegression) data(Melanoma) f <- Hist(time,status)~prop(thick)+strata(sex)+age+prop(ulcer,power=1)+timevar(invasion,test=1) ## here the unspecial terms, i.e., the term age is treated as prop ## also, strata is an alias for timvar EHF <- prodlim::EventHistory.frame(formula, Melanoma[1:10], specials=c("timevar","strata","prop","const","tp"), stripSpecials=c("timevar","prop"), stripArguments=list("prop"=list("power"=0), "timevar"=list("test"=0)), stripAlias=list("timevar"=c("strata"), "prop"=c("tp","const")), stripUnspecials="prop", specialsDesign=TRUE, dropIntercept=TRUE) EHF$prop EHF$timevar ## End(Not run)
## Here are some data with an event time and no competing risks ## and two covariates X1 and X2. ## Suppose we want to declare that variable X1 is treated differently ## than variable X2. For example, X1 could be a cluster variable, or ## X1 should have a proportional effect on the outcome. dsurv <- data.frame(time=1:7, status=c(0,1,1,0,0,0,1), X2=c(2.24,3.22,9.59,4.4,3.54,6.81,5.05), X3=c(1,1,1,1,0,0,1), X4=c(44.69,37.41,68.54,38.85,35.9,27.02,41.84), X1=factor(c("a","b","a","c","c","a","b"), levels=c("c","a","b"))) ## We pass a formula and the data e <- EventHistory.frame(Hist(time,status)~prop(X1)+X2+cluster(X3)+X4, data=dsurv, specials=c("prop","cluster"), stripSpecials=c("prop","cluster")) names(e) ## The first element is the event.history which is result of the left hand ## side of the formula: e$event.history ## same as with(dsurv,Hist(time,status)) ## to see the structure do colnames(e$event.history) unclass(e$event.history) ## in case of competing risks there will be an additional column called event, ## see help(Hist) for more details ## The other elements are the design, i.e., model.matrix for the non-special covariates e$design ## and a data.frame for the special covariates e$prop ## The special covariates can be returned as a model.matrix e2 <- EventHistory.frame(Hist(time,status)~prop(X1)+X2+cluster(X3)+X4, data=dsurv, specials=c("prop","cluster"), stripSpecials=c("prop","cluster"), specialsDesign=TRUE) e2$prop ## and the non-special covariates can be returned as a data.frame e3 <- EventHistory.frame(Hist(time,status)~prop(X1)+X2+cluster(X3)+X4, data=dsurv, specials=c("prop","cluster"), stripSpecials=c("prop","cluster"), specialsDesign=TRUE, unspecialsDesign=FALSE) e3$design ## the general idea is that the function is used to parse the combination of ## formula and data inside another function. Here is an example with ## competing risks SampleRegression <- function(formula,data=parent.frame()){ thecall <- match.call() ehf <- EventHistory.frame(formula=formula, data=data, stripSpecials=c("prop","cluster","timevar"), specials=c("prop","timevar","cluster")) time <- ehf$event.history[,"time"] status <- ehf$event.history[,"status"] ## event as a factor if (attr(ehf$event.history,"model")=="competing.risks"){ event <- ehf$event.history[,"event"] Event <- getEvent(ehf$event.history) list(response=data.frame(time,status,event,Event),X=ehf[-1]) } else{ # no competing risks list(response=data.frame(time,status),X=ehf[-1]) } } dsurv$outcome <- c("cause1","0","cause2","cause1","cause2","cause2","0") SampleRegression(Hist(time,outcome)~prop(X1)+X2+cluster(X3)+X4,dsurv) ## let's test if the parsing works form1 <- Hist(time,outcome!="0")~prop(X1)+X2+cluster(X3)+X4 form2 <- Hist(time,outcome)~prop(X1)+cluster(X3)+X4 ff <- list(form1,form2) lapply(ff,function(f){SampleRegression(f,dsurv)}) ## here is what the riskRegression package uses to ## distinguish between covariates with ## time-proportional effects and covariates with ## time-varying effects: ## Not run: library(riskRegression) data(Melanoma) f <- Hist(time,status)~prop(thick)+strata(sex)+age+prop(ulcer,power=1)+timevar(invasion,test=1) ## here the unspecial terms, i.e., the term age is treated as prop ## also, strata is an alias for timvar EHF <- prodlim::EventHistory.frame(formula, Melanoma[1:10], specials=c("timevar","strata","prop","const","tp"), stripSpecials=c("timevar","prop"), stripArguments=list("prop"=list("power"=0), "timevar"=list("test"=0)), stripAlias=list("timevar"=c("strata"), "prop"=c("tp","const")), stripUnspecials="prop", specialsDesign=TRUE, dropIntercept=TRUE) EHF$prop EHF$timevar ## End(Not run)
Extract a column from an event history object, as obtained with the function
Hist
.
getEvent(object, mode = "factor", column = "event")
getEvent(object, mode = "factor", column = "event")
object |
Object of class |
mode |
Return mode. One of |
column |
Name of the column to extract from the object. |
Since objects of class "Hist"
are also matrices, all columns are
numeric or integer valued. To extract a correctly labeled version, the
attribute states
of the object is used to generate factor levels.
Thomas Alexander Gerds <[email protected]>
dat= data.frame(time=1:5,event=letters[1:5]) x=with(dat,Hist(time,event)) ## inside integer unclass(x) ## extract event (the extra level "unknown" is for censored data) getEvent(x)
dat= data.frame(time=1:5,event=letters[1:5]) x=with(dat,Hist(time,event)) ## inside integer unclass(x) ## extract event (the extra level "unknown" is for censored data) getEvent(x)
Extract the states of a multi-state model
getStates(object, ...)
getStates(object, ...)
object |
Object of class |
... |
not used |
Applying this function to the fit of prodlim means to apply
it to fit$model.response
.
A character vector with the states of the model.
Thomas A. Gerds
Functionality for managing censored event history response data. The
function can be used as the left hand side of a formula: Hist
serves
prodlim
in a similar way as Surv
from the
survival package serves ‘survfit’. Hist
provides the suitable
extensions for dealing with right censored and interval censored data from
competing risks and other multi state models. Objects generated with
Hist
have a print and a plot method.
Hist( time, event, entry = NULL, id = NULL, cens.code = "0", addInitialState = FALSE )
Hist( time, event, entry = NULL, id = NULL, cens.code = "0", addInitialState = FALSE )
time |
for right censored data a numeric vector of event times – for
interval censored data a list or a data.frame providing two numeric vectors
the left and right endpoints of the intervals. See |
event |
A vector or a factor that specifies the events that occurred at
the corresponding value of |
entry |
Vector of delayed entry times (left-truncation) or list of two times when the entry time is interval censored. |
id |
Identifies the subjects to which multiple events belong for the
longitudinal form of storing the data of a multi state model – see
|
cens.code |
A character or numeric vector to identify the right
censored observations in the values of |
addInitialState |
If TRUE, an initial state is added to all ids for the longitudinal input form of a multi-state model. |
*Specification of the event times*
If time
is a numeric vector then the values are interpreted as right
censored event times, ie as the minimum of the event times and the censoring
times.
If time
is a list with two elements or data frame with two numeric
columns The first element (column) is used as the left endpoints of interval
censored observations and the second as the corresponding right endpoints.
When the two endpoints are equal, then this observation is treated as an
exact uncensored observation of the event time. If the value of the right
interval endpoint is either NA
or Inf
, then this observation
is treated as a right censored observation. Right censored observations can
also be specified by setting the value of event
to cens.code
.
This latter specification of right censored event times overwrites the
former: if event
equals cens.code
the observation is treated
as right censored no matter what the value of the right interval endpoint
is.
*Specification of the events*
If event
is a numeric, character or logical vector then the order of
the attribute "state" given to the value
of Hist
is determined
by the order in which the values appear. If it is a factor then the order
from the levels of the factor is used instead.
**Normal form of a multi state model**
If event
is a list or a data.frame with exactly two elements, then
these describe the transitions in a multi state model that occurred at the
corresponding time
as follows: The values of the first element are
interpreted as the from
states of the transition and values of the
second as the corresponding to
states.
**Longitudinal form of a multi state model**
If id
is given then event
must be a vector. In this case two
subsequent values of event
belonging to the same value of id
are treated as the from
and to
states of the transitions.
An object of class Hist
for which there are print and plot
methods. The object's internal is a matrix with some of the following
columns:
time |
the right censored times |
L |
the left endpoints of internal censored event times |
R |
the right endpoints of internal censored event times |
status |
|
event |
an integer valued numeric vector that codes the events. |
from |
an integer
valued numeric vector that codes the |
to |
an integer valued numeric vector that codes
the |
Further information is stored in attributes
. The key to the
official names given to the events and the from and to states is stored in
an attribute "states".
Thomas A. Gerds [email protected], Arthur Allignol [email protected]
plot.Hist
, summary.Hist
,
prodlim
## Right censored responses of a two state model ## --------------------------------------------- Hist(time=1:10,event=c(0,1,0,0,0,1,0,1,0,0)) ## change the code for events and censored observations Hist(time=1:10,event=c(99,"event",99,99,99,"event",99,"event",99,99),cens.code=99) TwoStateFrame <- SimSurv(10) SurvHist <- with(TwoStateFrame,Hist(time,status)) summary(SurvHist) plot(SurvHist) ## Right censored data from a competing risk model ## -------------------------------------------------- CompRiskFrame <- data.frame(time=1:10,event=c(1,2,0,3,0,1,2,1,2,1)) CRHist <- with(CompRiskFrame,Hist(time,event)) summary(CRHist) plot(CRHist) ## Interval censored data from a survival model icensFrame <- data.frame(L=c(1,1,3,4,6),R=c(2,NA,3,6,9),event=c(1,1,1,2,2)) with(icensFrame,Hist(time=list(L,R))) ## Interval censored data from a competing risk model with(icensFrame,Hist(time=list(L,R),event)) ## Multi state model MultiStateFrame <- data.frame(time=1:10, from=c(1,1,3,1,2,4,1,1,2,1), to=c(2,3,1,2,4,2,3,2,4,4)) with(MultiStateFrame,Hist(time,event=list(from,to))) ## MultiState with right censored observations MultiStateFrame1 <- data.frame(time=1:10, from=c(1,1,3,2,1,4,1,1,3,1), to=c(2,3,1,0,2,2,3,2,0,4)) with(MultiStateFrame1,Hist(time,event=list(from,to))) ## Using the longitudinal input method MultiStateFrame2 <- data.frame(time=c(0,1,2,3,4,0,1,2,0,1), event=c(1,2,3,0,1,2,4,2,1,2), id=c(1,1,1,1,2,2,2,2,3,3)) with(MultiStateFrame2,Hist(time,event=event,id=id))
## Right censored responses of a two state model ## --------------------------------------------- Hist(time=1:10,event=c(0,1,0,0,0,1,0,1,0,0)) ## change the code for events and censored observations Hist(time=1:10,event=c(99,"event",99,99,99,"event",99,"event",99,99),cens.code=99) TwoStateFrame <- SimSurv(10) SurvHist <- with(TwoStateFrame,Hist(time,status)) summary(SurvHist) plot(SurvHist) ## Right censored data from a competing risk model ## -------------------------------------------------- CompRiskFrame <- data.frame(time=1:10,event=c(1,2,0,3,0,1,2,1,2,1)) CRHist <- with(CompRiskFrame,Hist(time,event)) summary(CRHist) plot(CRHist) ## Interval censored data from a survival model icensFrame <- data.frame(L=c(1,1,3,4,6),R=c(2,NA,3,6,9),event=c(1,1,1,2,2)) with(icensFrame,Hist(time=list(L,R))) ## Interval censored data from a competing risk model with(icensFrame,Hist(time=list(L,R),event)) ## Multi state model MultiStateFrame <- data.frame(time=1:10, from=c(1,1,3,1,2,4,1,1,2,1), to=c(2,3,1,2,4,2,3,2,4,4)) with(MultiStateFrame,Hist(time,event=list(from,to))) ## MultiState with right censored observations MultiStateFrame1 <- data.frame(time=1:10, from=c(1,1,3,2,1,4,1,1,3,1), to=c(2,3,1,0,2,2,3,2,0,4)) with(MultiStateFrame1,Hist(time,event=list(from,to))) ## Using the longitudinal input method MultiStateFrame2 <- data.frame(time=c(0,1,2,3,4,0,1,2,0,1), event=c(1,2,3,0,1,2,4,2,1,2), id=c(1,1,1,1,2,2,2,2,3,3)) with(MultiStateFrame2,Hist(time,event=event,id=id))
Compute jackknife pseudo values.
jackknife(object, times, cause, keepResponse = FALSE, ...)
jackknife(object, times, cause, keepResponse = FALSE, ...)
object |
Object of class |
times |
Time points at which to compute pseudo values. |
cause |
Character (other classes are converted with |
keepResponse |
If |
... |
not used |
Compute jackknife pseudo values based on marginal Kaplan-Meier estimate of survival, or based on marginal Aalen-Johansen estimate of the absolute risks, i.e., the cumulative incidence function.
The R-package pseudo does a similar job, and appears to be a little faster in small samples, but much slower in large samples. See examples.
Thomas Alexander Gerds <[email protected]>
Andersen PK & Perme MP (2010). Pseudo-observations in survival analysis Statistical Methods in Medical Research, 19(1), 71-99.
## pseudo-values for survival models d=SimSurv(20) f=prodlim(Hist(time,status)~1,data=d) jackknife(f,times=c(3,5)) ## in some situations it may be useful to attach the ## the event time history to the result jackknife(f,times=c(3,5),keepResponse=TRUE) # pseudo-values for competing risk models set.seed(15) d=SimCompRisk(15) f=prodlim(Hist(time,event)~1,data=d) jackknife(f,times=c(3,5),cause=1) jackknife(f,times=c(1,3,5),cause=2)
## pseudo-values for survival models d=SimSurv(20) f=prodlim(Hist(time,status)~1,data=d) jackknife(f,times=c(3,5)) ## in some situations it may be useful to attach the ## the event time history to the result jackknife(f,times=c(3,5),keepResponse=TRUE) # pseudo-values for competing risk models set.seed(15) d=SimCompRisk(15) f=prodlim(Hist(time,event)~1,data=d) jackknife(f,times=c(3,5),cause=1) jackknife(f,times=c(1,3,5),cause=2)
Compute leave-one-out estimates
leaveOneOut(object, times, cause, lag = FALSE, ...)
leaveOneOut(object, times, cause, lag = FALSE, ...)
object |
Object of class |
times |
time points at which to compute leave-one-out event/survival probabilities. |
cause |
Character (other classes are converted with |
lag |
For survival models only. If |
... |
not used |
This function is the work-horse for jackknife
Thomas Alexander Gerds <[email protected]>
This function is used by summary.prodlim to deal with results.
List2Matrix(list, depth, names)
List2Matrix(list, depth, names)
list |
A named list which contains nested lists |
depth |
The depth in the list hierarchy until an rbindable object |
names |
Names for the list variables |
Reduction is done with rbind.
Matrix or data.frame.
Thomas A. Gerds <[email protected]>
x=list(a=data.frame(u=1,b=2,c=3),b=data.frame(u=3,b=4,c=6)) List2Matrix(x,depth=1,"X")
x=list(a=data.frame(u=1,b=2,c=3),b=data.frame(u=3,b=4,c=6)) List2Matrix(x,depth=1,"X")
This function is invoked and controlled by plot.prodlim
.
markTime(x, times, nlost, pch, col, ...)
markTime(x, times, nlost, pch, col, ...)
x |
The values of the curves at |
times |
The times where there curves are plotted. |
nlost |
The number of subjects lost to follow-up (censored) at
|
pch |
The symbol used to mark the curves. |
col |
The color of the symbols. |
... |
Arguments passed to |
This function should not be called directly. The arguments can be specified
as atRisk.arg
in the call to plot.prodlim
.
Nil
Thomas Alexander Gerds <[email protected]>
Compute average values of a variable according to neighborhoods.
meanNeighbors(x, y, ...)
meanNeighbors(x, y, ...)
x |
Object of class |
y |
Vector of numeric values. |
... |
Not used. |
Thomas Alexander Gerds <[email protected]>
meanNeighbors(x=1:10,y=c(1,10,100,1000,1001,1001,1001,1002,1002,1002))
meanNeighbors(x=1:10,y=c(1,10,100,1000,1001,1001,1001,1002,1002,1002))
Extract design matrix and data specials from a model.frame
model.design( terms, data, xlev = NULL, dropIntercept = FALSE, maxOrder = 1, unspecialsDesign = TRUE, specialsFactor = FALSE, specialsDesign = FALSE )
model.design( terms, data, xlev = NULL, dropIntercept = FALSE, maxOrder = 1, unspecialsDesign = TRUE, specialsFactor = FALSE, specialsDesign = FALSE )
terms |
terms object as obtained either with function |
data |
A data set in which terms are defined. |
xlev |
a named list of character vectors giving the full set of levels to be assumed for the factors.
Can have less elements, in which case the other levels are learned from the |
dropIntercept |
If TRUE drop intercept term from the design matrix |
maxOrder |
An error is produced if special variables are involved in interaction terms of order higher than max.order. |
unspecialsDesign |
A logical value: if |
specialsFactor |
A character vector containing special
variables which should be coerced into a single factor. If
|
specialsDesign |
A character vector containing special
variables which should be transformed into a design matrix via
|
The function separates special terms from the unspecial terms and returns
a list of design matrices, one for unspecial terms and one for each special.
Some special specials cannot or should not be evaluated in
data. E.g., y~a+dummy(x)+strata(v)
the function strata can and should be evaluated,
but in order to have model.frame
also evaluate dummy(x) one would be to define
and export the function dummy
. Still the term dummy(x)
can be used
to identify a special treatment of the variable x
. To deal with this case,
one can specify stripSpecials="dummy"
. In addition, the data
should include variables strata(z)
and x
, not dummy(x)
.
See examples.
The function untangle.specials
of the survival function does a similar job.
A list which contains - the design matrix with the levels of the variables stored in attribute 'levels' - separate data.frames which contain the values of the special variables.
Thomas A. Gerds <[email protected]>
EventHistory.frame
model.frame terms model.matrix .getXlevels
# specials that are evaluated. here ID needs to be defined set.seed(8) d <- data.frame(y=rnorm(5),x=factor(c("a","b","b","a","c")),z=c(2,2,7,7,7),v=sample(letters)[1:5]) d$z <- factor(d$z,levels=c(1:8)) ID <- function(x)x f <- formula(y~x+ID(z)) t <- terms(f,special="ID",data=d) mda <- model.design(terms(t),data=d,specialsFactor=TRUE) mda$ID mda$design ## mdb <- model.design(terms(t),data=d,specialsFactor=TRUE,unspecialsDesign=FALSE) mdb$ID mdb$design # set x-levels attr(mdb$ID,"levels") attr(model.design(terms(t),data=d,xlev=list("ID(z)"=1:10), specialsFactor=TRUE)$ID,"levels") # special specials (avoid define function SP) f <- formula(y~x+SP(z)+factor(v)) t <- terms(f,specials="SP",data=d) st <- strip.terms(t,specials="SP",arguments=NULL) md2a <- model.design(st,data=d,specialsFactor=TRUE,specialsDesign="SP") md2a$SP md2b <- model.design(st,data=d,specialsFactor=TRUE,specialsDesign=FALSE) md2b$SP # special function with argument f2 <- formula(y~x+treat(z,power=2)+treat(v,power=-1)) t2 <- terms(f2,special="treat") st2 <- strip.terms(t2,specials="treat",arguments=list("treat"=list("power"))) model.design(st2,data=d,specialsFactor=FALSE) model.design(st2,data=d,specialsFactor=TRUE) model.design(st2,data=d,specialsDesign=TRUE) library(survival) data(pbc) t3 <- terms(Surv(time,status!=0)~factor(edema)*age+strata(I(log(bili)>1))+strata(sex), specials=c("strata","cluster")) st3 <- strip.terms(t3,specials=c("strata"),arguments=NULL) md3 <- model.design(terms=st3,data=pbc[1:4,]) md3$strata md3$cluster f4 <- Surv(time,status)~age+const(factor(edema))+strata(sex,test=0)+prop(bili,power=1)+tp(albumin) t4 <- terms(f4,specials=c("prop","timevar","strata","tp","const")) st4 <- strip.terms(t4, specials=c("prop","timevar"), unspecials="prop", alias.names=list("timevar"="strata","prop"=c("const","tp")), arguments=list("prop"=list("power"=0),"timevar"=list("test"=0))) formula(st4) md4 <- model.design(st4,data=pbc[1:4,],specialsDesign=TRUE) md4$prop md4$timevar
# specials that are evaluated. here ID needs to be defined set.seed(8) d <- data.frame(y=rnorm(5),x=factor(c("a","b","b","a","c")),z=c(2,2,7,7,7),v=sample(letters)[1:5]) d$z <- factor(d$z,levels=c(1:8)) ID <- function(x)x f <- formula(y~x+ID(z)) t <- terms(f,special="ID",data=d) mda <- model.design(terms(t),data=d,specialsFactor=TRUE) mda$ID mda$design ## mdb <- model.design(terms(t),data=d,specialsFactor=TRUE,unspecialsDesign=FALSE) mdb$ID mdb$design # set x-levels attr(mdb$ID,"levels") attr(model.design(terms(t),data=d,xlev=list("ID(z)"=1:10), specialsFactor=TRUE)$ID,"levels") # special specials (avoid define function SP) f <- formula(y~x+SP(z)+factor(v)) t <- terms(f,specials="SP",data=d) st <- strip.terms(t,specials="SP",arguments=NULL) md2a <- model.design(st,data=d,specialsFactor=TRUE,specialsDesign="SP") md2a$SP md2b <- model.design(st,data=d,specialsFactor=TRUE,specialsDesign=FALSE) md2b$SP # special function with argument f2 <- formula(y~x+treat(z,power=2)+treat(v,power=-1)) t2 <- terms(f2,special="treat") st2 <- strip.terms(t2,specials="treat",arguments=list("treat"=list("power"))) model.design(st2,data=d,specialsFactor=FALSE) model.design(st2,data=d,specialsFactor=TRUE) model.design(st2,data=d,specialsDesign=TRUE) library(survival) data(pbc) t3 <- terms(Surv(time,status!=0)~factor(edema)*age+strata(I(log(bili)>1))+strata(sex), specials=c("strata","cluster")) st3 <- strip.terms(t3,specials=c("strata"),arguments=NULL) md3 <- model.design(terms=st3,data=pbc[1:4,]) md3$strata md3$cluster f4 <- Surv(time,status)~age+const(factor(edema))+strata(sex,test=0)+prop(bili,power=1)+tp(albumin) t4 <- terms(f4,specials=c("prop","timevar","strata","tp","const")) st4 <- strip.terms(t4, specials=c("prop","timevar"), unspecials="prop", alias.names=list("timevar"="strata","prop"=c("const","tp")), arguments=list("prop"=list("power"=0),"timevar"=list("test"=0))) formula(st4) md4 <- model.design(st4,data=pbc[1:4,],specialsDesign=TRUE) md4$prop md4$timevar
Nearest neighborhoods for the values of a continuous predictor. The result is used for the conditional Kaplan-Meier estimator and other conditional product limit estimators.
neighborhood(x, bandwidth = NULL, kernel = "box")
neighborhood(x, bandwidth = NULL, kernel = "box")
x |
Numeric vector – typically the observations of a continuous random variate. |
bandwidth |
Controls the distance between neighbors in a neighborhood.
It can be a decimal, i.e.\ the bandwidth, or the string ‘"smooth"’, in which
case |
kernel |
Only the rectangular kernel ("box") is implemented. |
An object of class 'neighborhood'. The value is a list that
includes the unique values of ‘x’ (values
) for which a neighborhood,
consisting of the nearest neighbors, is defined by the first neighbor
(first.nbh
) of the usually very long vector neighbors
and the
size of the neighborhood (size.nbh
).
Further values are the arguments bandwidth
, kernel
, the total
sample size n
and the number of unique values nu
.
Thomas Gerds
Stute, W. "Asymptotic Normality of Nearest Neighbor Regression Function Estimates", The Annals of Statistics, 1984,12,917–926.
d <- SimSurv(20) neighborhood(d$X2)
d <- SimSurv(20) neighborhood(d$X2)
Extract from a vector of character strings the names of special functions and auxiliary arguments
parseSpecialNames(x, special, arguments)
parseSpecialNames(x, special, arguments)
x |
Vector of character strings. |
special |
A character string: the name of the special argument. |
arguments |
A vector which contains the arguments of the special function |
Signals an error if an element has more arguments than specified by argument arguments.
A named list of parsed arguments. The names of the list are the special variable names, the elements are lists of arguments.
Thomas A. Gerds <[email protected]>
model.design
## ignore arguments parseSpecialNames("treat(Z)",special="treat") ## set default to 0 parseSpecialNames(c("log(Z)","a","log(B)"),special="log",arguments=list("base"=0)) ## set default to 0 parseSpecialNames(c("log(Z,3)","a","log(B,base=1)"),special="log",arguments=list("base"=0)) ## different combinations of order and names parseSpecialNames(c("log(Z,3)","a","log(B,1)"), special="log", arguments=list("base"=0)) parseSpecialNames(c("log(Z,1,3)","a","log(B,u=3)"), special="log", arguments=list("base"=0,"u"=1)) parseSpecialNames(c("log(Z,u=1,base=3)","a","log(B,u=3)"), special="log", arguments=list("base"=0,"u"=1)) parseSpecialNames(c("log(Z,u=1,base=3)","a","log(B,base=8,u=3)"), special="log", arguments=list("base"=0,"u"=1)) parseSpecialNames("treat(Z,u=2)", special="treat", arguments=list("u"=1,"k"=1)) parseSpecialNames(c("treat(Z,1,u=2)","treat(B,u=2,k=3)"), special="treat", arguments=list("u"=NA,"k"=NULL)) ## does not work to set default to NULL: parseSpecialNames(c("treat(Z,1,u=2)","treat(B,u=2)"), special="treat", arguments=list("u"=NA,"k"=NULL))
## ignore arguments parseSpecialNames("treat(Z)",special="treat") ## set default to 0 parseSpecialNames(c("log(Z)","a","log(B)"),special="log",arguments=list("base"=0)) ## set default to 0 parseSpecialNames(c("log(Z,3)","a","log(B,base=1)"),special="log",arguments=list("base"=0)) ## different combinations of order and names parseSpecialNames(c("log(Z,3)","a","log(B,1)"), special="log", arguments=list("base"=0)) parseSpecialNames(c("log(Z,1,3)","a","log(B,u=3)"), special="log", arguments=list("base"=0,"u"=1)) parseSpecialNames(c("log(Z,u=1,base=3)","a","log(B,u=3)"), special="log", arguments=list("base"=0,"u"=1)) parseSpecialNames(c("log(Z,u=1,base=3)","a","log(B,base=8,u=3)"), special="log", arguments=list("base"=0,"u"=1)) parseSpecialNames("treat(Z,u=2)", special="treat", arguments=list("u"=1,"k"=1)) parseSpecialNames(c("treat(Z,1,u=2)","treat(B,u=2,k=3)"), special="treat", arguments=list("u"=NA,"k"=NULL)) ## does not work to set default to NULL: parseSpecialNames(c("treat(Z,1,u=2)","treat(B,u=2)"), special="treat", arguments=list("u"=NA,"k"=NULL))
Use percentages instead of decimals to label the an axis with a probability scale .
PercentAxis(x, at, ...)
PercentAxis(x, at, ...)
x |
Side of the axis |
at |
Positions (decimals) at which to label the axis. |
... |
Given to |
Thomas Alexander Gerds
plot(0,0,xlim=c(0,1),ylim=c(0,1),axes=FALSE) PercentAxis(1,at=seq(0,1,.25)) PercentAxis(2,at=seq(0,1,.25))
plot(0,0,xlim=c(0,1),ylim=c(0,1),axes=FALSE) PercentAxis(1,at=seq(0,1,.25)) PercentAxis(2,at=seq(0,1,.25))
Automated plotting of the states and transitions that characterize a multi states model.
## S3 method for class 'Hist' plot( x, nrow, ncol, box.width, box.height, box.padding, xbox.position, ybox.position, stateLabels, arrowLabels, arrowLabelStyle = "symbolic", arrowLabelSymbol = "lambda", changeArrowLabelSide, curved, tagBoxes = FALSE, startCountZero = TRUE, oneFitsAll, margin, cex, rasta = FALSE, verbose = FALSE, ... )
## S3 method for class 'Hist' plot( x, nrow, ncol, box.width, box.height, box.padding, xbox.position, ybox.position, stateLabels, arrowLabels, arrowLabelStyle = "symbolic", arrowLabelSymbol = "lambda", changeArrowLabelSide, curved, tagBoxes = FALSE, startCountZero = TRUE, oneFitsAll, margin, cex, rasta = FALSE, verbose = FALSE, ... )
x |
An object of class |
nrow |
the number of graphic rows |
ncol |
the number of graphic columns |
box.width |
the widths of the boxes on the scale from 0 to 100 |
box.height |
the heights of the boxes on the scale from 0 to 100 |
box.padding |
how much room there should be between the label and the border of a box. Two values on the scale from 0 to 100: the first for the horizontal x-direction and the second for the vertical y-direction padding. |
xbox.position |
the x box positions (left lower corner) on the scale from 0 to 100. |
ybox.position |
the y box positions (left lower corner) on the scale from 0 to 100. |
stateLabels |
Vector of names to appear in the boxes (states).
Defaults to attr(x,"state.names"). The boxes can also be
individually labeled by smart arguments of the form
|
arrowLabels |
Vector of labels to appear in the boxes
(states). One for each arrow. The arrows can also be
individually labeled by smart arguments of the form
|
arrowLabelStyle |
Either "symbolic" for automated symbolic arrow labels, or "count" for arrow labels that reflect the number of transitions in the data. |
arrowLabelSymbol |
Symbol for automated symbolic arrow labels. Defaults to "lambda". |
changeArrowLabelSide |
A vector of mode logical (TRUE,FALSE) one for each arrow to change the side of the arrow on which the label is placed. |
curved |
The curvature of curved arrows via diagram::curvedarrow. Experimental. Values between 0 (no curvature) and 1 are meaningful. |
tagBoxes |
Logical. If TRUE the boxes are numbered in the upper left corner. The size can be controlled with smart argument boxtags.cex. The default is boxtags.cex=1.28. |
startCountZero |
Control states numbers for symbolic arrow labels and box tags. |
oneFitsAll |
If |
margin |
Set the figure margin via
|
cex |
Initial cex value for the state and the arrow
|
rasta |
For construction purposes. |
verbose |
If TRUE echo various things. |
... |
Smart control of arguments for the subroutines text (box label), rect (box), arrows, text (arrow label). Thus the three dots can be used to draw individual boxes with individual labels, arrows and arrow labels. E.g. arrow2.label="any label" changes the label of the second arrow. See examples. |
Use the functionality of the unix program ‘dot’ http://www.graphviz.org/About.php via R package Rgraphviz to obtain more complex graphs.
Thomas A Gerds [email protected]
## A simple survival model SurvFrame <- data.frame(time=1:10,status=c(0,1,1,0,0,1,0,0,1,0)) SurvHist <- with(SurvFrame,Hist(time,status)) plot(SurvHist) plot(SurvHist,box2.col=2,box2.label="experienced\nR user") plot(SurvHist, box2.col=2, box1.label="newby", box2.label="experienced\nR user", oneFitsAll=FALSE, arrow1.length=.5, arrow1.label="", arrow1.lwd=4) ## change the cex of all box labels: plot(SurvHist, box2.col=2, box1.label="newby", box2.label="experienced\nR user", oneFitsAll=FALSE, arrow1.length=.5, arrow1.label="", arrow1.lwd=4, label.cex=1) ## change the cex of single box labels: plot(SurvHist, box2.col=2, box1.label="newby", box2.label="experienced\nR user", oneFitsAll=FALSE, arrow1.length=.5, arrow1.label="", arrow1.lwd=4, label1.cex=1, label2.cex=2) ## The pbc data set from the survival package library(survival) data(pbc) plot(with(pbc,Hist(time,status)), stateLabels=c("randomized","transplant","dead"), arrowLabelStyle="count") ## two competing risks comprisk.model <- data.frame(time=1:3,status=1:3) CRHist <- with(comprisk.model,Hist(time,status,cens.code=2)) plot(CRHist) plot(CRHist,arrow1.label=paste(expression(eta(s,u)))) plot(CRHist,box2.label="This\nis\nstate 2",arrow1.label=paste(expression(gamma[1](t)))) plot(CRHist,box3.label="Any\nLabel",arrow2.label="any\nlabel") ## change the layout plot(CRHist, box1.label="Alive", box2.label="Dead\n cause 1", box3.label="Dead\n cause 2", arrow1.label=paste(expression(gamma[1](t))), arrow2.label=paste(expression(eta[2](t))), box1.col=2, box2.col=3, box3.col=4, nrow=2, ncol=3, box1.row=1, box1.column=2, box2.row=2, box2.column=1, box3.row=2, box3.column=3) ## more competing risks comprisk.model2 <- data.frame(time=1:4,status=1:4) CRHist2 <- with(comprisk.model2,Hist(time,status,cens.code=2)) plot(CRHist2,box1.row=2) ## illness-death models illness.death.frame <- data.frame(time=1:4, from=c("Disease\nfree", "Disease\nfree", "Diseased", "Disease\nfree"), to=c("0","Diseased","Dead","Dead")) IDHist <- with(illness.death.frame,Hist(time,event=list(from,to))) plot(IDHist) ## illness-death with recovery illness.death.frame2 <- data.frame(time=1:5, from=c("Disease\nfree","Disease\nfree","Diseased","Diseased","Disease\nfree"), to=c("0","Diseased","Disease\nfree","Dead","Dead")) IDHist2 <- with(illness.death.frame2,Hist(time,event=list(from,to))) plot(IDHist2) ## 4 state models x=data.frame(from=c(1,2,1,3,4),to=c(2,1,3,4,1),time=1:5) y=with(x,Hist(time=time,event=list(from=from,to=to))) plot(y) ## moving the label of some arrows d <- data.frame(time=1:5,from=c(1,1,1,2,2),to=c(2,3,4,3,4)) h <- with(d,Hist(time,event=list(from,to))) plot(h,box.padding=c(5,2), tagBoxes=TRUE, stateLabels=c("Remission\nwithout\nGvHD", "Remission\nwith\nGvHD", "Relapse", "Death\nwithout\nrelapse"), arrowLabelSymbol='alpha', arrowlabel3.x=35, arrowlabel3.y=53, arrowlabel4.y=54, arrowlabel4.x=68) ##'
## A simple survival model SurvFrame <- data.frame(time=1:10,status=c(0,1,1,0,0,1,0,0,1,0)) SurvHist <- with(SurvFrame,Hist(time,status)) plot(SurvHist) plot(SurvHist,box2.col=2,box2.label="experienced\nR user") plot(SurvHist, box2.col=2, box1.label="newby", box2.label="experienced\nR user", oneFitsAll=FALSE, arrow1.length=.5, arrow1.label="", arrow1.lwd=4) ## change the cex of all box labels: plot(SurvHist, box2.col=2, box1.label="newby", box2.label="experienced\nR user", oneFitsAll=FALSE, arrow1.length=.5, arrow1.label="", arrow1.lwd=4, label.cex=1) ## change the cex of single box labels: plot(SurvHist, box2.col=2, box1.label="newby", box2.label="experienced\nR user", oneFitsAll=FALSE, arrow1.length=.5, arrow1.label="", arrow1.lwd=4, label1.cex=1, label2.cex=2) ## The pbc data set from the survival package library(survival) data(pbc) plot(with(pbc,Hist(time,status)), stateLabels=c("randomized","transplant","dead"), arrowLabelStyle="count") ## two competing risks comprisk.model <- data.frame(time=1:3,status=1:3) CRHist <- with(comprisk.model,Hist(time,status,cens.code=2)) plot(CRHist) plot(CRHist,arrow1.label=paste(expression(eta(s,u)))) plot(CRHist,box2.label="This\nis\nstate 2",arrow1.label=paste(expression(gamma[1](t)))) plot(CRHist,box3.label="Any\nLabel",arrow2.label="any\nlabel") ## change the layout plot(CRHist, box1.label="Alive", box2.label="Dead\n cause 1", box3.label="Dead\n cause 2", arrow1.label=paste(expression(gamma[1](t))), arrow2.label=paste(expression(eta[2](t))), box1.col=2, box2.col=3, box3.col=4, nrow=2, ncol=3, box1.row=1, box1.column=2, box2.row=2, box2.column=1, box3.row=2, box3.column=3) ## more competing risks comprisk.model2 <- data.frame(time=1:4,status=1:4) CRHist2 <- with(comprisk.model2,Hist(time,status,cens.code=2)) plot(CRHist2,box1.row=2) ## illness-death models illness.death.frame <- data.frame(time=1:4, from=c("Disease\nfree", "Disease\nfree", "Diseased", "Disease\nfree"), to=c("0","Diseased","Dead","Dead")) IDHist <- with(illness.death.frame,Hist(time,event=list(from,to))) plot(IDHist) ## illness-death with recovery illness.death.frame2 <- data.frame(time=1:5, from=c("Disease\nfree","Disease\nfree","Diseased","Diseased","Disease\nfree"), to=c("0","Diseased","Disease\nfree","Dead","Dead")) IDHist2 <- with(illness.death.frame2,Hist(time,event=list(from,to))) plot(IDHist2) ## 4 state models x=data.frame(from=c(1,2,1,3,4),to=c(2,1,3,4,1),time=1:5) y=with(x,Hist(time=time,event=list(from=from,to=to))) plot(y) ## moving the label of some arrows d <- data.frame(time=1:5,from=c(1,1,1,2,2),to=c(2,3,4,3,4)) h <- with(d,Hist(time,event=list(from,to))) plot(h,box.padding=c(5,2), tagBoxes=TRUE, stateLabels=c("Remission\nwithout\nGvHD", "Remission\nwith\nGvHD", "Relapse", "Death\nwithout\nrelapse"), arrowLabelSymbol='alpha', arrowlabel3.x=35, arrowlabel3.y=53, arrowlabel4.y=54, arrowlabel4.x=68) ##'
Function to plot survival probabilities or absolute risks (cumulative incidence function) against time.
## S3 method for class 'prodlim' plot( x, type, cause, select, newdata, add = FALSE, col, lty, lwd, ylim, xlim, ylab, xlab = "Time", num.digits = 2, timeconverter, legend = TRUE, short.labels = TRUE, logrank = FALSE, marktime = FALSE, confint = TRUE, automar, atrisk = ifelse(add, FALSE, TRUE), timeOrigin = 0, axes = TRUE, background = TRUE, percent = TRUE, minAtrisk = 0, limit = 10, ... )
## S3 method for class 'prodlim' plot( x, type, cause, select, newdata, add = FALSE, col, lty, lwd, ylim, xlim, ylab, xlab = "Time", num.digits = 2, timeconverter, legend = TRUE, short.labels = TRUE, logrank = FALSE, marktime = FALSE, confint = TRUE, automar, atrisk = ifelse(add, FALSE, TRUE), timeOrigin = 0, axes = TRUE, background = TRUE, percent = TRUE, minAtrisk = 0, limit = 10, ... )
x |
an object of class ‘prodlim’ as returned by the
|
type |
Either |
cause |
For competing risk models. Character (other classes are converted with |
select |
Select which lines to plot. This can be used when
there are many strata or many competing risks to select a
subset of the lines. However, a more clean way to select
covariate strata is to use the argument |
newdata |
a data frame containing covariate strata for which
to show curves. When omitted element |
add |
if |
col |
color for curves. Default is |
lty |
line type for curves. Default is 1. |
lwd |
line width for all curves. Default is 3. |
ylim |
limits of the y-axis |
xlim |
limits of the x-axis |
ylab |
label for the y-axis |
xlab |
label for the x-axis |
num.digits |
Number of digits when rounding off numerical values for legend and at-risk tables. |
timeconverter |
The following options are supported: "days2years" (conversion factor: 1/365.25) "months2years" (conversion factor: 1/12) "days2months" (conversion factor 1/30.4368499) "years2days" (conversion factor 365.25) "years2months" (conversion factor 12) "months2days" (conversion factor 30.4368499) |
legend |
if TRUE a legend is plotted by calling the function
legend. Optional arguments of the function |
short.labels |
Logical. When |
logrank |
If TRUE, the logrank p-value will be extracted from
a call to |
marktime |
if TRUE the curves are tick-marked at right
censoring times by invoking the function
|
confint |
if TRUE pointwise confidence intervals are plotted
by invoking the function |
automar |
If TRUE the function trys to find suitable values for the figure margins around the main plotting region. |
atrisk |
if TRUE display numbers of subjects at risk by
invoking the function |
timeOrigin |
Start of the time axis |
axes |
If true axes are drawn. See details. |
background |
If |
percent |
If true the y-axis is labeled in percent. |
minAtrisk |
Integer. Show the curve only until the number
at-risk is at least |
limit |
When newdata is not specified and the number of lines
in element |
... |
Parameters that are filtered by
|
From version 1.1.3 on the arguments legend.args, atrisk.args, confint.args
are obsolete and only available for backward compatibility. Instead
arguments for the invoked functions atRisk
, legend
,
confInt
, markTime
, axis
are simply specified as
atrisk.cex=2
. The specification is not case sensitive, thus
atRisk.cex=2
or atRISK.cex=2
will have the same effect. The
function axis
is called twice, and arguments of the form
axis1.labels
, axis1.at
are used for the time axis whereas
axis2.pos
, axis1.labels
, etc. are used for the y-axis.
These arguments are processed via ...{}
of plot.prodlim
and
inside by using the function SmartControl
. Documentation of these
arguments can be found in the help pages of the corresponding functions.
The (invisible) object.
Similar functionality is provided by the function
plot.survfit
of the survival library
Thomas Alexander Gerds <[email protected]>
plot
, legend
,
axis
,
prodlim
,plot.Hist
,summary.prodlim
,
neighborhood
, atRisk
,
confInt
, markTime
,
backGround
## simulate right censored data from a two state model set.seed(100) dat <- SimSurv(100) # with(dat,plot(Hist(time,status))) ### marginal Kaplan-Meier estimator kmfit <- prodlim(Hist(time, status) ~ 1, data = dat) plot(kmfit) plot(kmfit,atrisk.show.censored=1L,atrisk.at=seq(0,12,3)) plot(kmfit,timeconverter="years2months") # change time range plot(kmfit,xlim=c(0,4)) # change scale of y-axis plot(kmfit,percent=FALSE) # mortality instead of survival plot(kmfit,type="risk") # change axis label and position of ticks plot(kmfit, xlim=c(0,10), axis1.at=seq(0,10,1), axis1.labels=0:10, xlab="Years", axis2.las=2, atrisk.at=seq(0,10,2.5), atrisk.title="") # change background color plot(kmfit, xlim=c(0,10), confint.citype="shadow", col=1, axis1.at=0:10, axis1.labels=0:10, xlab="Years", axis2.las=2, atrisk.at=seq(0,10,2.5), atrisk.title="", background=TRUE, background.fg="white", background.horizontal=seq(0,1,.25/2), background.vertical=seq(0,10,2.5), background.bg=c("gray88")) # change type of confidence limits plot(kmfit, xlim=c(0,10), confint.citype="dots", col=4, background=TRUE, background.bg=c("white","gray88"), background.fg="gray77", background.horizontal=seq(0,1,.25/2), background.vertical=seq(0,10,2)) ### Kaplan-Meier in discrete strata kmfitX <- prodlim(Hist(time, status) ~ X1, data = dat) plot(kmfitX,atrisk.show.censored=1L) # move legend plot(kmfitX,legend.x="bottomleft",atRisk.cex=1.3, atrisk.title="No. subjects") ## Control the order of strata ## since version 1.5.1 prodlim does obey the order of ## factor levels dat$group <- factor(cut(dat$X2,c(-Inf,0,0.5,Inf)), labels=c("High","Intermediate","Low")) kmfitG <- prodlim(Hist(time, status) ~ group, data = dat) plot(kmfitG) ## relevel dat$group2 <- factor(cut(dat$X2,c(-Inf,0,0.5,Inf)), levels=c("(0.5, Inf]","(0,0.5]","(-Inf,0]"), labels=c("Low","Intermediate","High")) kmfitG2 <- prodlim(Hist(time, status) ~ group2, data = dat) plot(kmfitG2) # add log-rank test to legend plot(kmfitX, atRisk.cex=1.3, logrank=TRUE, legend.x="topright", atrisk.title="at-risk") # change atrisk labels plot(kmfitX, legend.x="bottomleft", atrisk.title="Patients", atrisk.cex=0.9, atrisk.labels=c("X1=0","X1=1")) # multiple categorical factors kmfitXG <- prodlim(Hist(time,status)~X1+group2,data=dat) plot(kmfitXG,select=1:2) ### Kaplan-Meier in continuous strata kmfitX2 <- prodlim(Hist(time, status) ~ X2, data = dat) plot(kmfitX2,xlim=c(0,10)) # specify values of X2 for which to show the curves plot(kmfitX2,xlim=c(0,10),newdata=data.frame(X2=c(-1.8,0,1.2))) ### Cluster-correlated data library(survival) cdat <- cbind(SimSurv(20),patnr=sample(1:5,size=20,replace=TRUE)) kmfitC <- prodlim(Hist(time, status) ~ cluster(patnr), data = cdat) plot(kmfitC) plot(kmfitC,atrisk.labels=c("Units","Patients")) kmfitC2 <- prodlim(Hist(time, status) ~ X1+cluster(patnr), data = cdat) plot(kmfitC2) plot(kmfitC2,atrisk.labels=c("Teeth","Patients","Teeth","Patients"), atrisk.col=c(1,1,2,2)) ### Cluster-correlated data with strata n = 50 foo = runif(n) bar = rexp(n) baz = rexp(n,1/2) d = stack(data.frame(foo,bar,baz)) d$cl = sample(10, 3*n, replace=TRUE) fit = prodlim(Surv(values) ~ ind + cluster(cl), data=d) plot(fit) ## simulate right censored data from a competing risk model datCR <- SimCompRisk(100) with(datCR,plot(Hist(time,event))) ### marginal Aalen-Johansen estimator ajfit <- prodlim(Hist(time, event) ~ 1, data = datCR) plot(ajfit) # same as plot(ajfit,cause=1) plot(ajfit,atrisk.show.censored=1L) # cause 2 plot(ajfit,cause=2) # both in one plot(ajfit,cause=1) plot(ajfit,cause=2,add=TRUE,col=2) ### stacked plot plot(ajfit,cause="stacked",select=2) ### stratified Aalen-Johansen estimator ajfitX1 <- prodlim(Hist(time, event) ~ X1, data = datCR) plot(ajfitX1) ## add total number at-risk to a stratified curve ttt = 1:10 plot(ajfitX1,atrisk.at=ttt,col=2:3) plot(ajfit,add=TRUE,col=1) atRisk(ajfit,newdata=datCR,col=1,times=ttt,line=3,labels="Total") ## stratified Aalen-Johansen estimator in nearest neighborhoods ## of a continuous variable ajfitX <- prodlim(Hist(time, event) ~ X1+X2, data = datCR) plot(ajfitX,newdata=data.frame(X1=c(1,1,0),X2=c(4,10,10))) plot(ajfitX,newdata=data.frame(X1=c(1,1,0),X2=c(4,10,10)),cause=2) ## stacked plot plot(ajfitX, newdata=data.frame(X1=0,X2=0.1), cause="stacked", legend.title="X1=0,X2=0.1", legend.legend=paste("cause:",getStates(ajfitX$model.response)), plot.main="Subject specific stacked plot")
## simulate right censored data from a two state model set.seed(100) dat <- SimSurv(100) # with(dat,plot(Hist(time,status))) ### marginal Kaplan-Meier estimator kmfit <- prodlim(Hist(time, status) ~ 1, data = dat) plot(kmfit) plot(kmfit,atrisk.show.censored=1L,atrisk.at=seq(0,12,3)) plot(kmfit,timeconverter="years2months") # change time range plot(kmfit,xlim=c(0,4)) # change scale of y-axis plot(kmfit,percent=FALSE) # mortality instead of survival plot(kmfit,type="risk") # change axis label and position of ticks plot(kmfit, xlim=c(0,10), axis1.at=seq(0,10,1), axis1.labels=0:10, xlab="Years", axis2.las=2, atrisk.at=seq(0,10,2.5), atrisk.title="") # change background color plot(kmfit, xlim=c(0,10), confint.citype="shadow", col=1, axis1.at=0:10, axis1.labels=0:10, xlab="Years", axis2.las=2, atrisk.at=seq(0,10,2.5), atrisk.title="", background=TRUE, background.fg="white", background.horizontal=seq(0,1,.25/2), background.vertical=seq(0,10,2.5), background.bg=c("gray88")) # change type of confidence limits plot(kmfit, xlim=c(0,10), confint.citype="dots", col=4, background=TRUE, background.bg=c("white","gray88"), background.fg="gray77", background.horizontal=seq(0,1,.25/2), background.vertical=seq(0,10,2)) ### Kaplan-Meier in discrete strata kmfitX <- prodlim(Hist(time, status) ~ X1, data = dat) plot(kmfitX,atrisk.show.censored=1L) # move legend plot(kmfitX,legend.x="bottomleft",atRisk.cex=1.3, atrisk.title="No. subjects") ## Control the order of strata ## since version 1.5.1 prodlim does obey the order of ## factor levels dat$group <- factor(cut(dat$X2,c(-Inf,0,0.5,Inf)), labels=c("High","Intermediate","Low")) kmfitG <- prodlim(Hist(time, status) ~ group, data = dat) plot(kmfitG) ## relevel dat$group2 <- factor(cut(dat$X2,c(-Inf,0,0.5,Inf)), levels=c("(0.5, Inf]","(0,0.5]","(-Inf,0]"), labels=c("Low","Intermediate","High")) kmfitG2 <- prodlim(Hist(time, status) ~ group2, data = dat) plot(kmfitG2) # add log-rank test to legend plot(kmfitX, atRisk.cex=1.3, logrank=TRUE, legend.x="topright", atrisk.title="at-risk") # change atrisk labels plot(kmfitX, legend.x="bottomleft", atrisk.title="Patients", atrisk.cex=0.9, atrisk.labels=c("X1=0","X1=1")) # multiple categorical factors kmfitXG <- prodlim(Hist(time,status)~X1+group2,data=dat) plot(kmfitXG,select=1:2) ### Kaplan-Meier in continuous strata kmfitX2 <- prodlim(Hist(time, status) ~ X2, data = dat) plot(kmfitX2,xlim=c(0,10)) # specify values of X2 for which to show the curves plot(kmfitX2,xlim=c(0,10),newdata=data.frame(X2=c(-1.8,0,1.2))) ### Cluster-correlated data library(survival) cdat <- cbind(SimSurv(20),patnr=sample(1:5,size=20,replace=TRUE)) kmfitC <- prodlim(Hist(time, status) ~ cluster(patnr), data = cdat) plot(kmfitC) plot(kmfitC,atrisk.labels=c("Units","Patients")) kmfitC2 <- prodlim(Hist(time, status) ~ X1+cluster(patnr), data = cdat) plot(kmfitC2) plot(kmfitC2,atrisk.labels=c("Teeth","Patients","Teeth","Patients"), atrisk.col=c(1,1,2,2)) ### Cluster-correlated data with strata n = 50 foo = runif(n) bar = rexp(n) baz = rexp(n,1/2) d = stack(data.frame(foo,bar,baz)) d$cl = sample(10, 3*n, replace=TRUE) fit = prodlim(Surv(values) ~ ind + cluster(cl), data=d) plot(fit) ## simulate right censored data from a competing risk model datCR <- SimCompRisk(100) with(datCR,plot(Hist(time,event))) ### marginal Aalen-Johansen estimator ajfit <- prodlim(Hist(time, event) ~ 1, data = datCR) plot(ajfit) # same as plot(ajfit,cause=1) plot(ajfit,atrisk.show.censored=1L) # cause 2 plot(ajfit,cause=2) # both in one plot(ajfit,cause=1) plot(ajfit,cause=2,add=TRUE,col=2) ### stacked plot plot(ajfit,cause="stacked",select=2) ### stratified Aalen-Johansen estimator ajfitX1 <- prodlim(Hist(time, event) ~ X1, data = datCR) plot(ajfitX1) ## add total number at-risk to a stratified curve ttt = 1:10 plot(ajfitX1,atrisk.at=ttt,col=2:3) plot(ajfit,add=TRUE,col=1) atRisk(ajfit,newdata=datCR,col=1,times=ttt,line=3,labels="Total") ## stratified Aalen-Johansen estimator in nearest neighborhoods ## of a continuous variable ajfitX <- prodlim(Hist(time, event) ~ X1+X2, data = datCR) plot(ajfitX,newdata=data.frame(X1=c(1,1,0),X2=c(4,10,10))) plot(ajfitX,newdata=data.frame(X1=c(1,1,0),X2=c(4,10,10)),cause=2) ## stacked plot plot(ajfitX, newdata=data.frame(X1=0,X2=0.1), cause="stacked", legend.title="X1=0,X2=0.1", legend.legend=paste("cause:",getStates(ajfitX$model.response)), plot.main="Subject specific stacked plot")
Plotting a competing-risk-model.
plotCompetingRiskModel(stateLabels, horizontal = TRUE, ...)
plotCompetingRiskModel(stateLabels, horizontal = TRUE, ...)
stateLabels |
Labels for the boxes. |
horizontal |
The orientation of the plot. |
... |
Arguments passed to |
Thomas Alexander Gerds <[email protected]>
plotIllnessDeathModel
, plot.Hist
plotCompetingRiskModel() plotCompetingRiskModel(labels=c("a","b")) plotCompetingRiskModel(labels=c("a","b","c"))
plotCompetingRiskModel() plotCompetingRiskModel(labels=c("a","b")) plotCompetingRiskModel(labels=c("a","b","c"))
Plotting an illness-death-model using plot.Hist
.
plotIllnessDeathModel(stateLabels, style = 1, recovery = FALSE, ...)
plotIllnessDeathModel(stateLabels, style = 1, recovery = FALSE, ...)
stateLabels |
Labels for the three boxes. |
style |
Either |
recovery |
Logical. If |
... |
Arguments passed to plot.Hist. |
Thomas Alexander Gerds <[email protected]>
plotCompetingRiskModel
, plot.Hist
plotIllnessDeathModel() plotIllnessDeathModel(style=2) plotIllnessDeathModel(style=2, stateLabels=c("a","b\nc","d"), box1.col="yellow", box2.col="green", box3.col="red")
plotIllnessDeathModel() plotIllnessDeathModel(style=2) plotIllnessDeathModel(style=2, stateLabels=c("a","b\nc","d"), box1.col="yellow", box2.col="green", box3.col="red")
Evaluation of estimated survival or event probabilities at given times and covariate constellations.
## S3 method for class 'prodlim' predict( object, times, newdata, level.chaos = 1, type = c("surv", "risk", "cuminc", "list"), mode = "list", bytime = FALSE, cause, ... )
## S3 method for class 'prodlim' predict( object, times, newdata, level.chaos = 1, type = c("surv", "risk", "cuminc", "list"), mode = "list", bytime = FALSE, cause, ... )
object |
A fitted object of class "prodlim". |
times |
Vector of times at which to return the estimated probabilities (survival or absolute event risks). |
newdata |
A data frame with the same variable names as those that appear on the right hand side of the 'prodlim' formula. If there are covariates this argument is required. |
level.chaos |
Integer specifying the sorting of the output: ‘0’ sort by time and newdata; ‘1’ only by time; ‘2’ no sorting at all |
type |
Choice between "surv","risk","cuminc","list": "surv": predict survival probabilities only survival models "risk"/"cuminc": predict absolute risk, i.e., cumulative incidence function. "list": find the indices corresponding to times and newdata. See value. Defaults to "surv" for two-state models and to "risk" for competing risk models. |
mode |
Only for |
bytime |
Logical. If TRUE and |
cause |
Character (other classes are converted with |
... |
Only for compatibility reasons. |
Predicted (survival) probabilities are returned that can be plotted, summarized and used for inverse of probability of censoring weighting.
type=="surv"
A list or a matrix with survival probabilities
for all times and all newdata.
type=="risk"
or type=="cuminc"
A list or a matrix with cumulative incidences for all
times and all newdata.
type=="list"
A list with the following components:
times |
The argument |
predictors |
The relevant part of the argument |
indices |
A list with the following components
|
dimensions |
a list with the following
components: |
Thomas Alexander Gerds <[email protected]>
dat <- SimSurv(400) fit <- prodlim(Hist(time,status)~1,data=dat) ## predict the survival probs at selected times predict(fit,times=c(3,5,10)) ## NA is returned when the time point is beyond the ## range of definition of the Kaplan-Meier estimator: predict(fit,times=c(-1,0,10,100,1000,10000)) ## when there are strata, newdata is required ## or neighborhoods (i.e. overlapping strata) mfit <- prodlim(Hist(time,status)~X1+X2,data=dat) predict(mfit,times=c(-1,0,10,100,1000,10000),newdata=dat[18:21,]) ## this can be requested in matrix form predict(mfit,times=c(-1,0,10,100,1000,10000),newdata=dat[18:21,],mode="matrix") ## and even transposed predict(mfit,times=c(-1,0,10,100,1000,10000),newdata=dat[18:21,],mode="matrix",bytime=TRUE)
dat <- SimSurv(400) fit <- prodlim(Hist(time,status)~1,data=dat) ## predict the survival probs at selected times predict(fit,times=c(3,5,10)) ## NA is returned when the time point is beyond the ## range of definition of the Kaplan-Meier estimator: predict(fit,times=c(-1,0,10,100,1000,10000)) ## when there are strata, newdata is required ## or neighborhoods (i.e. overlapping strata) mfit <- prodlim(Hist(time,status)~X1+X2,data=dat) predict(mfit,times=c(-1,0,10,100,1000,10000),newdata=dat[18:21,]) ## this can be requested in matrix form predict(mfit,times=c(-1,0,10,100,1000,10000),newdata=dat[18:21,],mode="matrix") ## and even transposed predict(mfit,times=c(-1,0,10,100,1000,10000),newdata=dat[18:21,],mode="matrix",bytime=TRUE)
Function to extract the predicted probabilities at the individual event times that have been used for fitting a prodlim object.
predictSurvIndividual(object, lag = 1)
predictSurvIndividual(object, lag = 1)
object |
A fitted object of class "prodlim". |
lag |
Integer. ‘0’ means predictions at the individual times, 1 means just before the individual times, etc. |
A vector of survival probabilities.
Thomas A. Gerds [email protected]
SurvFrame <- data.frame(time=1:10,status=rbinom(10,1,.5)) x <- prodlim(formula=Hist(time=time,status!=0)~1,data=SurvFrame) predictSurvIndividual(x,lag=1)
SurvFrame <- data.frame(time=1:10,status=rbinom(10,1,.5)) x <- prodlim(formula=Hist(time=time,status!=0)~1,data=SurvFrame) predictSurvIndividual(x,lag=1)
Pretty printing of objects created with the functionality of the ‘prodlim’ library.
## S3 method for class 'prodlim' print(x, ...)
## S3 method for class 'prodlim' print(x, ...)
x |
Object of class |
... |
Not used. |
Thomas Gerds <[email protected]>
summary.prodlim
, predict.prodlim
Nonparametric estimation in event history analysis. Featuring fast algorithms and user friendly syntax adapted from the survival package. The product limit algorithm is used for right censored data; the self-consistency algorithm for interval censored data.
prodlim( formula, data = parent.frame(), subset, na.action = NULL, reverse = FALSE, conf.int = 0.95, bandwidth = NULL, caseweights, discrete.level = 3, x = TRUE, maxiter = 1000, grid, tol = 7, method = c("npmle", "one.step", "impute.midpoint", "impute.right"), exact = TRUE, type )
prodlim( formula, data = parent.frame(), subset, na.action = NULL, reverse = FALSE, conf.int = 0.95, bandwidth = NULL, caseweights, discrete.level = 3, x = TRUE, maxiter = 1000, grid, tol = 7, method = c("npmle", "one.step", "impute.midpoint", "impute.right"), exact = TRUE, type )
formula |
A formula whose left hand side is a |
data |
A data.frame in which all the variables of
|
subset |
Passed as argument |
na.action |
All lines in data with any missing values in the variables of formula are removed. |
reverse |
For right censored data, if reverse=TRUE then the censoring distribution is estimated. |
conf.int |
The level (between 0 and 1) for two-sided pointwise confidence intervals. Defaults to 0.95. Remark: only plain Wald-type confidence limits are available. |
bandwidth |
Smoothing parameter for nearest neighborhoods
based on the values of a continuous covariate. See function
|
caseweights |
Weights applied to the contribution of each
subject to change the number of events and the number at
risk. This can be used for bootstrap and survey analysis. Should
be a vector of the same length and the same order as |
discrete.level |
Numeric covariates are treated as factors
when their number of unique values exceeds not
|
x |
logical value: if |
maxiter |
For interval censored data only. Maximal number of iterations to obtain the nonparametric maximum likelihood estimate. Defaults to 1000. |
grid |
For interval censored data only. When method=one.step grid for one-step product limit estimate. Defaults to sorted list of unique left and right endpoints of the observed intervals. |
tol |
For interval censored data only. Numeric value whose negative exponential is used as convergence criterion for finding the nonparametric maximum likelihood estimate. Defaults to 7 meaning exp(-7). |
method |
For interval censored data only. If equal to
|
exact |
If TRUE the grid of time points used for estimation includes all the L and R endpoints of the observed intervals. |
type |
In two state models either |
The response of formula
(ie the left hand side of the ‘~’ operator)
specifies the model.
In two-state models – the classical survival case – the standard
Kaplan-Meier method is applied. For this the response can be specified as a
Surv
or as a Hist
object. The Hist
function allows you to change the code for censored observations, e.g.
Hist(time,status,cens.code="4")
.
Besides a slight gain of computing efficiency, there are some extensions that are not included in the current version of the survival package:
(0) The Kaplan-Meier estimator for the censoring times reverse=TRUE
is correctly estimated when there are ties between event and censoring
times.
(1) A conditional version of the kernel smoothed Kaplan-Meier estimator for at most one continuous predictors using nearest neighborhoods (Beran 1981, Stute 1984, Akritas 1994).
(2) For cluster-correlated data the right hand side of formula
may
identify a cluster
variable. In that case Greenwood's variance
formula is replaced by the formula of Ying and Wei (1994).
(3) Competing risk models can be specified via Hist
response
objects in formula
.
The Aalen-Johansen estimator is applied for estimating the absolute risk of the competing causes, i.e., the cumulative incidence functions.
Under construction:
(U0) Interval censored event times specified via Hist
are used
to find the nonparametric maximum likelihood estimate. Currently this works
only for two-state models and the results should match with those from the
package ‘Icens’.
(U1) Extensions to more complex multi-states models
(U2) The nonparametric maximum likelihood estimate for interval censored observations of competing risks models.
Object of class "prodlim". See print.prodlim
, predict.prodlim
, predict,
summary.prodlim
, plot.prodlim
.
Thomas A. Gerds [email protected]
Andersen, Borgan, Gill, Keiding (1993) Springer 'Statistical Models Based on Counting Processes'
Akritas (1994) The Annals of Statistics 22, 1299-1327 Nearest neighbor estimation of a bivariate distribution under random censoring.
R Beran (1981) http://anson.ucdavis.edu/~beran/paper.html 'Nonparametric regression with randomly censored survival data'
Stute (1984) The Annals of Statistics 12, 917–926 'Asymptotic Normality of Nearest Neighbor Regression Function Estimates'
Ying, Wei (1994) Journal of Multivariate Analysis 50, 17-29 The Kaplan-Meier estimate for dependent failure time observations
predictSurv
, predictSurvIndividual
,
predictAbsrisk
, Hist
, neighborhood
,
Surv
, survfit
, strata
,
##---------------------two-state survival model------------ dat <- SimSurv(30) with(dat,plot(Hist(time,status))) fit <- prodlim(Hist(time,status)~1,data=dat) print(fit) plot(fit) summary(fit) quantile(fit) ## Subset fit1a <- prodlim(Hist(time,status)~1,data=dat,subset=dat$X1==1) fit1b <- prodlim(Hist(time,status)~1,data=dat,subset=dat$X1==1 & dat$X2>0) ## --------------------clustered data--------------------- library(survival) cdat <- cbind(SimSurv(30),patnr=sample(1:5,size=30,replace=TRUE)) fit <- prodlim(Hist(time,status)~cluster(patnr),data=cdat) print(fit) plot(fit) summary(fit) ##-----------compare Kaplan-Meier to survival package--------- dat <- SimSurv(30) pfit <- prodlim(Surv(time,status)~1,data=dat) pfit <- prodlim(Hist(time,status)~1,data=dat) ## same thing sfit <- survfit(Surv(time,status)~1,data=dat,conf.type="plain") ## same result for the survival distribution function all(round(pfit$surv,12)==round(sfit$surv,12)) summary(pfit,digits=3) summary(sfit,times=quantile(unique(dat$time))) ##-----------estimating the censoring survival function---------------- rdat <- data.frame(time=c(1,2,3,3,3,4,5,5,6,7),status=c(1,0,0,1,0,1,0,1,1,0)) rpfit <- prodlim(Hist(time,status)~1,data=rdat,reverse=TRUE) rsfit <- survfit(Surv(time,1-status)~1,data=rdat,conf.type="plain") ## When there are ties between times at which events are observed ## times at which subjects are right censored, then the convention ## is that events come first. This is not obeyed by the above call to survfit, ## and hence only prodlim delivers the correct reverse Kaplan-Meier: cbind("Wrong:"=rsfit$surv,"Correct:"=rpfit$surv) ##-------------------stratified Kaplan-Meier--------------------- pfit.X2 <- prodlim(Surv(time,status)~X2,data=dat) summary(pfit.X2) summary(pfit.X2,intervals=TRUE) plot(pfit.X2) ##----------continuous covariate: Stone-Beran estimate------------ prodlim(Surv(time,status)~X1,data=dat) ##-------------both discrete and continuous covariates------------ prodlim(Surv(time,status)~X2+X1,data=dat) ##----------------------interval censored data---------------------- dat <- data.frame(L=1:10,R=c(2,3,12,8,9,10,7,12,12,12),status=c(1,1,0,1,1,1,1,0,0,0)) with(dat,Hist(time=list(L,R),event=status)) dat$event=1 npmle.fitml <- prodlim(Hist(time=list(L,R),event)~1,data=dat) ##-------------competing risks------------------- CompRiskFrame <- data.frame(time=1:100,event=rbinom(100,2,.5),X=rbinom(100,1,.5)) crFit <- prodlim(Hist(time,event)~X,data=CompRiskFrame) summary(crFit) plot(crFit) summary(crFit,cause=2) plot(crFit,cause=2) # Changing the cens.code: dat <- data.frame(time=1:10,status=c(1,2,1,2,5,5,1,1,2,2)) fit <- prodlim(Hist(time,status)~1,data=dat) print(fit$model.response) fit <- prodlim(Hist(time,status,cens.code="2")~1,data=dat) print(fit$model.response) plot(fit) plot(fit,cause="5") ##------------delayed entry---------------------- ## left-truncated event times with competing risk endpoint dat <- data.frame(entry=c(7,3,11,12,11,2,1,7,15,17,3),time=10:20,status=c(1,0,2,2,0,0,1,2,0,2,0)) fitd <- prodlim(Hist(time=time,event=status,entry=entry)~1,data=dat) summary(fitd) plot(fitd)
##---------------------two-state survival model------------ dat <- SimSurv(30) with(dat,plot(Hist(time,status))) fit <- prodlim(Hist(time,status)~1,data=dat) print(fit) plot(fit) summary(fit) quantile(fit) ## Subset fit1a <- prodlim(Hist(time,status)~1,data=dat,subset=dat$X1==1) fit1b <- prodlim(Hist(time,status)~1,data=dat,subset=dat$X1==1 & dat$X2>0) ## --------------------clustered data--------------------- library(survival) cdat <- cbind(SimSurv(30),patnr=sample(1:5,size=30,replace=TRUE)) fit <- prodlim(Hist(time,status)~cluster(patnr),data=cdat) print(fit) plot(fit) summary(fit) ##-----------compare Kaplan-Meier to survival package--------- dat <- SimSurv(30) pfit <- prodlim(Surv(time,status)~1,data=dat) pfit <- prodlim(Hist(time,status)~1,data=dat) ## same thing sfit <- survfit(Surv(time,status)~1,data=dat,conf.type="plain") ## same result for the survival distribution function all(round(pfit$surv,12)==round(sfit$surv,12)) summary(pfit,digits=3) summary(sfit,times=quantile(unique(dat$time))) ##-----------estimating the censoring survival function---------------- rdat <- data.frame(time=c(1,2,3,3,3,4,5,5,6,7),status=c(1,0,0,1,0,1,0,1,1,0)) rpfit <- prodlim(Hist(time,status)~1,data=rdat,reverse=TRUE) rsfit <- survfit(Surv(time,1-status)~1,data=rdat,conf.type="plain") ## When there are ties between times at which events are observed ## times at which subjects are right censored, then the convention ## is that events come first. This is not obeyed by the above call to survfit, ## and hence only prodlim delivers the correct reverse Kaplan-Meier: cbind("Wrong:"=rsfit$surv,"Correct:"=rpfit$surv) ##-------------------stratified Kaplan-Meier--------------------- pfit.X2 <- prodlim(Surv(time,status)~X2,data=dat) summary(pfit.X2) summary(pfit.X2,intervals=TRUE) plot(pfit.X2) ##----------continuous covariate: Stone-Beran estimate------------ prodlim(Surv(time,status)~X1,data=dat) ##-------------both discrete and continuous covariates------------ prodlim(Surv(time,status)~X2+X1,data=dat) ##----------------------interval censored data---------------------- dat <- data.frame(L=1:10,R=c(2,3,12,8,9,10,7,12,12,12),status=c(1,1,0,1,1,1,1,0,0,0)) with(dat,Hist(time=list(L,R),event=status)) dat$event=1 npmle.fitml <- prodlim(Hist(time=list(L,R),event)~1,data=dat) ##-------------competing risks------------------- CompRiskFrame <- data.frame(time=1:100,event=rbinom(100,2,.5),X=rbinom(100,1,.5)) crFit <- prodlim(Hist(time,event)~X,data=CompRiskFrame) summary(crFit) plot(crFit) summary(crFit,cause=2) plot(crFit,cause=2) # Changing the cens.code: dat <- data.frame(time=1:10,status=c(1,2,1,2,5,5,1,1,2,2)) fit <- prodlim(Hist(time,status)~1,data=dat) print(fit$model.response) fit <- prodlim(Hist(time,status,cens.code="2")~1,data=dat) print(fit$model.response) plot(fit) plot(fit,cause="5") ##------------delayed entry---------------------- ## left-truncated event times with competing risk endpoint dat <- data.frame(entry=c(7,3,11,12,11,2,1,7,15,17,3),time=10:20,status=c(1,0,2,2,0,0,1,2,0,2,0)) fitd <- prodlim(Hist(time=time,event=status,entry=entry)~1,data=dat) summary(fitd) plot(fitd)
Quantiles for Kaplan-Meier and Aalen-Johansen estimates.
## S3 method for class 'prodlim' quantile(x, q, cause = 1, ...)
## S3 method for class 'prodlim' quantile(x, q, cause = 1, ...)
x |
Object of class |
q |
Quantiles. Vector of values between 0 and 1. |
cause |
For competing risks the cause of interest. |
... |
not used |
Thomas Alexander Gerds <[email protected]>
library(lava) set.seed(1) d=SimSurv(30) # Quantiles of the potential followup time g=prodlim(Hist(time,status)~1,data=d,reverse=TRUE) quantile(g) # survival time f=prodlim(Hist(time,status)~1,data=d) f1=prodlim(Hist(time,status)~X1,data=d) # default: median and IQR quantile(f) quantile(f1) # median alone quantile(f,.5) quantile(f1,.5) # competing risks set.seed(3) dd = SimCompRisk(30) ff=prodlim(Hist(time,event)~1,data=dd) ff1=prodlim(Hist(time,event)~X1,data=dd) ## default: median and IQR quantile(ff) quantile(ff1) print(quantile(ff1),na.val="NA") print(quantile(ff1),na.val="Not reached")
library(lava) set.seed(1) d=SimSurv(30) # Quantiles of the potential followup time g=prodlim(Hist(time,status)~1,data=d,reverse=TRUE) quantile(g) # survival time f=prodlim(Hist(time,status)~1,data=d) f1=prodlim(Hist(time,status)~X1,data=d) # default: median and IQR quantile(f) quantile(f1) # median alone quantile(f,.5) quantile(f1,.5) # competing risks set.seed(3) dd = SimCompRisk(30) ff=prodlim(Hist(time,event)~1,data=dd) ff1=prodlim(Hist(time,event)~X1,data=dd) ## default: median and IQR quantile(ff) quantile(ff1) print(quantile(ff1),na.val="NA") print(quantile(ff1),na.val="Not reached")
Calculation of Efron's re-distribution to the right algorithm to obtain the Kaplan-Meier estimate.
redist(time, status)
redist(time, status)
time |
A numeric vector of event times. |
status |
The event status vector takes the value |
Calculations needed to
Thomas A. Gerds <[email protected]>
prodlim
redist(time=c(.35,0.4,.51,.51,.7,.73),status=c(0,1,1,0,0,1))
redist(time=c(.35,0.4,.51,.51,.7,.73),status=c(0,1,1,0,0,1))
Function for finding matching rows between two matrices or data.frames. First the matrices or data.frames are vectorized by row wise pasting together the elements. Then it uses the function match. Thus the function returns a vector with the row numbers of (first) matches of its first argument in its second.
row.match(x, table, nomatch = NA)
row.match(x, table, nomatch = NA)
x |
Vector or matrix whose rows are to be matched |
table |
Matrix or data.frame that contain the rows to be matched against. |
nomatch |
the value to be returned in the case when no match is found. Note that it is coerced to 'integer'. |
A vector of the same length as 'x'.
Thomas A. Gerds
match
tab <- data.frame(num=1:26,abc=letters) x <- c(3,"c") row.match(x,tab) x <- data.frame(n=c(3,8),z=c("c","h")) row.match(x,tab)
tab <- data.frame(num=1:26,abc=letters) x <- c(3,"c") row.match(x,tab) x <- data.frame(n=c(3,8),z=c("c","h")) row.match(x,tab)
Simulate right censored competing risks data with two covariates X1 and X2. Both covariates have effect exp(1) on the hazards of event 1 and zero effect on the hazard of event 2.
SimCompRisk(N, ...)
SimCompRisk(N, ...)
N |
sample size |
... |
do nothing. |
This function calls crModel
, then adds covariates and finally calls sim.lvm
.
data.frame with simulated data
Thomas Alexander Gerds
SimCompRisk(10)
SimCompRisk(10)
Simulate right censored survival data with two covariates X1 and X2, both have effect exp(1) on the hazard of the unobserved event time.
SimSurv(N, ...)
SimSurv(N, ...)
N |
sample size |
... |
do nothing |
This function calls survModel
, then adds covariates and finally calls sim.lvm
.
data.frame with simulated data
Thomas Alexander Gerds
Bender, Augustin & Blettner. Generating survival times to simulate Cox proportional hazards models. Statistics in Medicine, 24: 1713-1723, 2005.
SimSurv(10)
SimSurv(10)
Returns an index of positions. Intended for evaluating a step function at selected times. The function counts how many elements of a vector, e.g. the jump times of the step function, are smaller or equal to the elements in a second vector, e.g. the times where the step function should be evaluated.
sindex(jump.times, eval.times, comp = "smaller", strict = FALSE)
sindex(jump.times, eval.times, comp = "smaller", strict = FALSE)
jump.times |
Numeric vector: e.g. the unique jump times of a step function. |
eval.times |
Numeric vector: e.g. the times where the step function should be evaluated |
comp |
If "greater" count the number of jump times that are greater (greater or equal when strict==FALSE) than the eval times |
strict |
If TRUE make the comparison of jump times and eval times strict |
If all jump.times
are greater than a particular eval.time
the
sindex returns 0
. This must be considered when sindex is used for
subsetting, see the Examples below.
Index of the same length as eval.times
containing the numbers
of the jump.times
that are smaller than or equal to
eval.times
.
Thomas A. Gerds [email protected]
test <- list(time = c(1, 1,5,5,2,7,9), status = c(1,0,1,0,1,1,0)) fit <- prodlim(Hist(time,status)~1,data=test) jtimes <- fit$time etimes <- c(0,.5,2,8,10) fit$surv c(1,fit$surv)[1+sindex(jtimes,etimes)]
test <- list(time = c(1, 1,5,5,2,7,9), status = c(1,0,1,0,1,1,0)) fit <- prodlim(Hist(time,status)~1,data=test) jtimes <- fit$time etimes <- c(0,.5,2,8,10) fit$surv c(1,fit$surv)[1+sindex(jtimes,etimes)]
Many R functions need to pass several arguments to several different subroutines. Such arguments can are given as part of the three magic dots "...". The function SmartControl reads the dots together with a list of default values and returns for each subroutine a list of arguments.
SmartControl( call, keys, ignore, defaults, forced, split, ignore.case = TRUE, replaceDefaults, verbose = TRUE )
SmartControl( call, keys, ignore, defaults, forced, split, ignore.case = TRUE, replaceDefaults, verbose = TRUE )
call |
A list of named arguments, as for example can be obtained via
|
keys |
A vector of names of subroutines. |
ignore |
A list of names which are removed from the argument
|
defaults |
A named list of default argument lists for the subroutines. |
forced |
A named list of forced arguments for the subroutines. |
split |
Regular expression used for splitting keys from arguments.
Default is |
ignore.case |
If |
replaceDefaults |
If |
verbose |
If |
Thomas Alexander Gerds <[email protected]>
myPlot = function(...){ ## set defaults plot.DefaultArgs=list(x=0,y=0,type="n") lines.DefaultArgs=list(x=1:10,lwd=3) ## apply smartcontrol x=SmartControl(call=list(...), defaults=list("plot"=plot.DefaultArgs, "lines"=lines.DefaultArgs), ignore.case=TRUE,keys=c("plot","axis2","lines"), forced=list("plot"=list(axes=FALSE),"axis2"=list(side=2))) ## call subroutines do.call("plot",x$plot) do.call("lines",x$lines) do.call("axis",x$axis2) } myPlot(plot.ylim=c(0,5),plot.xlim=c(0,20),lines.lty=3,axis2.At=c(0,3,4))
myPlot = function(...){ ## set defaults plot.DefaultArgs=list(x=0,y=0,type="n") lines.DefaultArgs=list(x=1:10,lwd=3) ## apply smartcontrol x=SmartControl(call=list(...), defaults=list("plot"=plot.DefaultArgs, "lines"=lines.DefaultArgs), ignore.case=TRUE,keys=c("plot","axis2","lines"), forced=list("plot"=list(axes=FALSE),"axis2"=list(side=2))) ## call subroutines do.call("plot",x$plot) do.call("lines",x$lines) do.call("axis",x$axis2) } myPlot(plot.ylim=c(0,5),plot.xlim=c(0,20),lines.lty=3,axis2.At=c(0,3,4))
All event times are stopped at a given time point and corresponding events are censored
stopTime(object, stop.time)
stopTime(object, stop.time)
object |
Event history object as obtained with |
stop.time |
Time point at which to stop the event history object |
Stopped event history object where all times are censored
at stop.time
. All observations with times greater than stop.time
are set to stop.time
and the event status is set to attr(object,"cens.code")
.
A new column "stop.time"
is equal to 1
for stopped observations
and equal to 0
for the other observations.
Thomas A. Gerds <[email protected]>
Hist
set.seed(29) d <- SimSurv(10) h <- with(d,Hist(time,status)) h stopTime(h,8) stopTime(h,5) ## works also with Surv objects library(survival) s <- with(d,Surv(time,status)) stopTime(s,5) ## competing risks set.seed(29) dr <- SimCompRisk(10) hr <- with(dr,Hist(time,event)) hr stopTime(hr,8) stopTime(hr,5)
set.seed(29) d <- SimSurv(10) h <- with(d,Hist(time,status)) h stopTime(h,8) stopTime(h,5) ## works also with Surv objects library(survival) s <- with(d,Surv(time,status)) stopTime(s,5) ## competing risks set.seed(29) dr <- SimCompRisk(10) hr <- with(dr,Hist(time,event)) hr stopTime(hr,8) stopTime(hr,5)
Reformulate a terms object such that some specials are stripped off
strip.terms( terms, specials, alias.names = NULL, unspecials = NULL, arguments, keep.response = TRUE )
strip.terms( terms, specials, alias.names = NULL, unspecials = NULL, arguments, keep.response = TRUE )
terms |
Terms object |
specials |
Character vector of specials which should be stripped off |
alias.names |
Optional. A named list with alias names for the specials. |
unspecials |
Optional. A special name for treating all the unspecial terms. |
arguments |
A named list of arguments, one for each element
of specials. Elements are passed to |
keep.response |
Keep the response in the resulting object? |
This function is used to remove special specials, i.e., those which cannot or should not be evaluated. IMPORTANT: the unstripped terms need to know about all specials including the aliases. See examples.
Reformulated terms object with an additional attribute which contains the stripped.specials
.
Thomas A. Gerds <[email protected]>
parseSpecialNames reformulate drop.terms
## parse a survival formula and identify terms which ## should be treated as proportional or timevarying: f <- Surv(time,status)~age+prop(factor(edema))+timevar(sex,test=0)+prop(bili,power=1) tt <- terms(f,specials=c("prop","timevar")) attr(tt,"specials") st <- strip.terms(tt,specials=c("prop","timevar"),arguments=NULL) formula(st) attr(st,"specials") attr(st,"stripped.specials") ## provide a default value for argument power of proportional treatment ## and argument test of timevarying treatment: st2 <- strip.terms(tt, specials=c("prop","timevar"), arguments=list("prop"=list("power"=0),"timevar"=list("test"=0))) formula(st2) attr(st2,"stripped.specials") attr(st2,"stripped.arguments") ## treat all unspecial terms as proportional st3 <- strip.terms(tt, unspecials="prop", specials=c("prop","timevar"), arguments=list("prop"=list("power"=0),"timevar"=list("test"=0))) formula(st3) attr(st3,"stripped.specials") attr(st3,"stripped.arguments") ## allow alias names: strata for timevar and tp, const for prop. ## IMPORTANT: the unstripped terms need to know about ## all specials including the aliases f <- Surv(time,status)~age+const(factor(edema))+strata(sex,test=0)+prop(bili,power=1)+tp(albumin) tt2 <- terms(f,specials=c("prop","timevar","strata","tp","const")) st4 <- strip.terms(tt2, specials=c("prop","timevar"), unspecials="prop", alias.names=list("timevar"="strata","prop"=c("const","tp")), arguments=list("prop"=list("power"=0),"timevar"=list("test"=0))) formula(st4) attr(st4,"stripped.specials") attr(st4,"stripped.arguments") ## test if alias works also without unspecial argument st5 <- strip.terms(tt2, specials=c("prop","timevar"), alias.names=list("timevar"="strata","prop"=c("const","tp")), arguments=list("prop"=list("power"=0),"timevar"=list("test"=0))) formula(st5) attr(st5,"stripped.specials") attr(st5,"stripped.arguments") library(survival) data(pbc) model.design(st4,data=pbc[1:3,],specialsDesign=TRUE) model.design(st5,data=pbc[1:3,],specialsDesign=TRUE)
## parse a survival formula and identify terms which ## should be treated as proportional or timevarying: f <- Surv(time,status)~age+prop(factor(edema))+timevar(sex,test=0)+prop(bili,power=1) tt <- terms(f,specials=c("prop","timevar")) attr(tt,"specials") st <- strip.terms(tt,specials=c("prop","timevar"),arguments=NULL) formula(st) attr(st,"specials") attr(st,"stripped.specials") ## provide a default value for argument power of proportional treatment ## and argument test of timevarying treatment: st2 <- strip.terms(tt, specials=c("prop","timevar"), arguments=list("prop"=list("power"=0),"timevar"=list("test"=0))) formula(st2) attr(st2,"stripped.specials") attr(st2,"stripped.arguments") ## treat all unspecial terms as proportional st3 <- strip.terms(tt, unspecials="prop", specials=c("prop","timevar"), arguments=list("prop"=list("power"=0),"timevar"=list("test"=0))) formula(st3) attr(st3,"stripped.specials") attr(st3,"stripped.arguments") ## allow alias names: strata for timevar and tp, const for prop. ## IMPORTANT: the unstripped terms need to know about ## all specials including the aliases f <- Surv(time,status)~age+const(factor(edema))+strata(sex,test=0)+prop(bili,power=1)+tp(albumin) tt2 <- terms(f,specials=c("prop","timevar","strata","tp","const")) st4 <- strip.terms(tt2, specials=c("prop","timevar"), unspecials="prop", alias.names=list("timevar"="strata","prop"=c("const","tp")), arguments=list("prop"=list("power"=0),"timevar"=list("test"=0))) formula(st4) attr(st4,"stripped.specials") attr(st4,"stripped.arguments") ## test if alias works also without unspecial argument st5 <- strip.terms(tt2, specials=c("prop","timevar"), alias.names=list("timevar"="strata","prop"=c("const","tp")), arguments=list("prop"=list("power"=0),"timevar"=list("test"=0))) formula(st5) attr(st5,"stripped.specials") attr(st5,"stripped.arguments") library(survival) data(pbc) model.design(st4,data=pbc[1:3,],specialsDesign=TRUE) model.design(st5,data=pbc[1:3,],specialsDesign=TRUE)
Describe events and censoring patterns of an event history.
## S3 method for class 'Hist' summary(object, verbose = TRUE, ...)
## S3 method for class 'Hist' summary(object, verbose = TRUE, ...)
object |
An object with class ‘Hist’ derived with |
verbose |
Logical. If FALSE any printing is supressed. |
... |
Not used |
NULL
for survival and competing risk models. For other
multi-state models, it is a list with the following entries:
states |
the states of the model |
transitions |
the transitions between the states |
trans.frame |
a data.frame with the from and to states of the transitions |
Thomas A. Gerds [email protected]
icensFrame <- data.frame(L=c(1,1,3,4,6),R=c(2,NA,3,6,9),event=c(1,1,1,2,2)) with(icensFrame,summary(Hist(time=list(L,R))))
icensFrame <- data.frame(L=c(1,1,3,4,6),R=c(2,NA,3,6,9),event=c(1,1,1,2,2)) with(icensFrame,summary(Hist(time=list(L,R))))
Summarizing the result of the product limit method in life-table format. Calculates the number of subjects at risk and counts events and censored observations at specified times or in specified time intervals.
## S3 method for class 'prodlim' summary( object, times, newdata, max.tables = 20, surv = TRUE, cause, intervals = FALSE, percent = FALSE, format = "df", ... )
## S3 method for class 'prodlim' summary( object, times, newdata, max.tables = 20, surv = TRUE, cause, intervals = FALSE, percent = FALSE, format = "df", ... )
object |
An object with class ‘prodlim’ derived with
|
times |
Vector of times at which to return the estimated probabilities. |
newdata |
A data frame with the same variable names as those
that appear on the right hand side of the 'prodlim' formula.
Defaults to |
max.tables |
Integer. If |
surv |
Logical. If FALSE report event probabilities instead of
survival probabilities. Only available for
|
cause |
For competing risk models. The event of interest for which predictions of the absolute risks are obtained by evaluating the cause-specific cumulative
incidence functions at |
intervals |
Logical. If TRUE count events and censored in
intervals between the values of |
percent |
Logical. If TRUE all estimated values are multiplied by 100 and thus interpretable on a percent scale. |
format |
Control format of output. Since May 2021,
the result is a data.table and data.frame with attributes. When there are multiple
covariate strata or competing risks, these are indicated by columns.
Set format to |
... |
Further arguments that are passed to the print function. |
For cluster-correlated data the number of clusters at-risk are are also given. Confidence intervals are displayed when they are part of the fitted object.
A data.frame with the relevant information.
Thomas A. Gerds [email protected]
library(lava) set.seed(17) m <- survModel() distribution(m,~age) <- uniform.lvm(30,80) distribution(m,~sex) <- binomial.lvm() m <- categorical(m,~z,K=3) regression(m,eventtime~age) <- 0.01 regression(m,eventtime~sex) <- -0.4 d <- sim(m,50) d$sex <- factor(d$sex,levels=c(0,1),labels=c("female","male")) d$Z <- factor(d$z,levels=c(1,0,2),labels=c("B","A","C")) # Univariate Kaplan-Meier # ----------------------------------------------------------------------------------------- fit0 <- prodlim(Hist(time,event)~1,data=d) summary(fit0) ## show survival probabilities as percentage and ## count number of events within intervals of a ## given time-grid: summary(fit0,times=c(1,5,10,12),percent=TRUE,intervals=TRUE) ## the result of summary has a print function ## which passes ... to print and print.listof sx <- summary(fit0,times=c(1,5,10,12),percent=TRUE,intervals=TRUE) print(sx,digits=3) ## show absolute risks, i.e., cumulative incidences (1-survival) summary(fit0,times=c(1,5,10,12),surv=FALSE,percent=TRUE,intervals=TRUE) # Stratified Kaplan-Meier # ----------------------------------------------------------------------------------------- fit1 <- prodlim(Hist(time,event)~sex,data=d) print(summary(fit1,times=c(1,5,10),intervals=TRUE,percent=TRUE),digits=3) # old behaviour print(summary(fit1,times=c(1,5,10),intervals=TRUE,percent=TRUE,format="list"),digits=3) summary(fit1,times=c(1,5,10),intervals=TRUE,percent=TRUE) fit2 <- prodlim(Hist(time,event)~Z,data=d) print(summary(fit2,times=c(1,5,10),intervals=TRUE,percent=TRUE),digits=3) ## Continuous strata (Beran estimator) # ----------------------------------------------------------------------------------------- fit3 <- prodlim(Hist(time,event)~age,data=d) print(summary(fit3, times=c(1,5,10), newdata=data.frame(age=c(20,50,70)), intervals=TRUE, percent=TRUE),digits=3) ## stratified Beran estimator # ----------------------------------------------------------------------------------------- fit4 <- prodlim(Hist(time,event)~age+sex,data=d) print(summary(fit4, times=c(1,5,10), newdata=data.frame(age=c(20,50,70),sex=c("female","male","male")), intervals=TRUE, percent=TRUE),digits=3) print(summary(fit4, times=c(1,5,10), newdata=data.frame(age=c(20,50,70),sex=c("female","male","male")), intervals=TRUE, percent=TRUE),digits=3) ## assess results from summary x <- summary(fit4,times=10,newdata=expand.grid(age=c(60,40,50),sex=c("male","female"))) cbind(names(x$table),do.call("rbind",lapply(x$table,round,2))) x <- summary(fit4,times=10,newdata=expand.grid(age=c(60,40,50),sex=c("male","female"))) ## Competing risks: Aalen-Johansen # ----------------------------------------------------------------------------------------- d <- SimCompRisk(30) crfit <- prodlim(Hist(time,event)~X1,data=d) summary(crfit,times=c(1,2,5)) summary(crfit,times=c(1,2,5),cause=1,intervals=TRUE) summary(crfit,times=c(1,2,5),cause=1) summary(crfit,times=c(1,2,5),cause=1:2) # extract the actual tables from the summary sumfit <- summary(crfit,times=c(1,2,5),print=FALSE) sumfit$table[[1]] # cause 1 sumfit$table[[2]] # cause 2 # '
library(lava) set.seed(17) m <- survModel() distribution(m,~age) <- uniform.lvm(30,80) distribution(m,~sex) <- binomial.lvm() m <- categorical(m,~z,K=3) regression(m,eventtime~age) <- 0.01 regression(m,eventtime~sex) <- -0.4 d <- sim(m,50) d$sex <- factor(d$sex,levels=c(0,1),labels=c("female","male")) d$Z <- factor(d$z,levels=c(1,0,2),labels=c("B","A","C")) # Univariate Kaplan-Meier # ----------------------------------------------------------------------------------------- fit0 <- prodlim(Hist(time,event)~1,data=d) summary(fit0) ## show survival probabilities as percentage and ## count number of events within intervals of a ## given time-grid: summary(fit0,times=c(1,5,10,12),percent=TRUE,intervals=TRUE) ## the result of summary has a print function ## which passes ... to print and print.listof sx <- summary(fit0,times=c(1,5,10,12),percent=TRUE,intervals=TRUE) print(sx,digits=3) ## show absolute risks, i.e., cumulative incidences (1-survival) summary(fit0,times=c(1,5,10,12),surv=FALSE,percent=TRUE,intervals=TRUE) # Stratified Kaplan-Meier # ----------------------------------------------------------------------------------------- fit1 <- prodlim(Hist(time,event)~sex,data=d) print(summary(fit1,times=c(1,5,10),intervals=TRUE,percent=TRUE),digits=3) # old behaviour print(summary(fit1,times=c(1,5,10),intervals=TRUE,percent=TRUE,format="list"),digits=3) summary(fit1,times=c(1,5,10),intervals=TRUE,percent=TRUE) fit2 <- prodlim(Hist(time,event)~Z,data=d) print(summary(fit2,times=c(1,5,10),intervals=TRUE,percent=TRUE),digits=3) ## Continuous strata (Beran estimator) # ----------------------------------------------------------------------------------------- fit3 <- prodlim(Hist(time,event)~age,data=d) print(summary(fit3, times=c(1,5,10), newdata=data.frame(age=c(20,50,70)), intervals=TRUE, percent=TRUE),digits=3) ## stratified Beran estimator # ----------------------------------------------------------------------------------------- fit4 <- prodlim(Hist(time,event)~age+sex,data=d) print(summary(fit4, times=c(1,5,10), newdata=data.frame(age=c(20,50,70),sex=c("female","male","male")), intervals=TRUE, percent=TRUE),digits=3) print(summary(fit4, times=c(1,5,10), newdata=data.frame(age=c(20,50,70),sex=c("female","male","male")), intervals=TRUE, percent=TRUE),digits=3) ## assess results from summary x <- summary(fit4,times=10,newdata=expand.grid(age=c(60,40,50),sex=c("male","female"))) cbind(names(x$table),do.call("rbind",lapply(x$table,round,2))) x <- summary(fit4,times=10,newdata=expand.grid(age=c(60,40,50),sex=c("male","female"))) ## Competing risks: Aalen-Johansen # ----------------------------------------------------------------------------------------- d <- SimCompRisk(30) crfit <- prodlim(Hist(time,event)~X1,data=d) summary(crfit,times=c(1,2,5)) summary(crfit,times=c(1,2,5),cause=1,intervals=TRUE) summary(crfit,times=c(1,2,5),cause=1) summary(crfit,times=c(1,2,5),cause=1:2) # extract the actual tables from the summary sumfit <- summary(crfit,times=c(1,2,5),print=FALSE) sumfit$table[[1]] # cause 1 sumfit$table[[2]] # cause 2 # '
Create a survival model to simulate a right censored event time data without covariates
survModel()
survModel()
This function requires the lava
package.
A structural equation model initialized with three variables: the latent event time, the latent right censored time, and the observed right censored event time.
Thomas A. Gerds <[email protected]>